• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Study of nitinol deformations to enrich understanding of materials with targeted properties

Bioengineer by Bioengineer
May 13, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A paper by Kazan Federal University appeared in International Journal of Solids and Structures

IMAGE

Credit: Kazan Federal University

The work was sponsored by Russian Science Foundation; the project, headed by Professor Anatolii Mokshin, is titled “Theoretical, simulating and experimental research of physico-mechanical traits of amorphous-producing systems with heterogeneous local visco-elastic properties”.

“We performed calculations for porous nitinol,” shares first co-author, Associate Professor Bulat Galimzyanov. “It’s widely used in various industries thanks to its unique physico-mechanical properties, such as low volume weight, high corrosion resistance, high biocompatibility and shape memory. Obtaining nitinol as amorphous foam is very labor-intensive, it requires high temperatures and extremely high melt cooling rate (over 1,000,000 K per second). Obviously, traditional experiments in this case are very costly and complex. We used computer modelling based on molecular dynamics.”

As Galimzyanov explains, amorphous metallic foams are prospective materials.

“Their cell structure comprises a solid metallic frame with gas-filled pores. Pores can be either hermetic or conjoined. The volume ratio of pores and their hermeticity determine the primary physico-chemical properties of the metallic foam, among which are low heat conductivity, high plasticity, and good noise absorption. Thanks to that, metallic foams can find wide applications in the automotive industry, shipbuilding, and aerospace industry,” says the interviewee.

As the research shows, amorphous porous nitinol can sustain major mechanical loads, significantly higher than crystalline nitinol.

Apart from the aforementioned applications, amorphous porous nitinol can also be used in prosthetics and biocompatible materials because it’s much more resistant to stretching and shrinking than bones but has the same porousness.

###

Media Contact
Yury Nurmeev
[email protected]

Original Source

https://eng.kpfu.ru/novosti/mechanical-response-of-nitinol-to-deformations-gives-insight-into-materials-with-targeted-properties/

Related Journal Article

http://dx.doi.org/10.1016/j.ijsolstr.2021.111047

Tags: Chemistry/Physics/Materials SciencesMaterialsMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Isotope Tafel Analysis Reveals Proton Transfer Kinetics

September 9, 2025
Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

Gemini South Uncovers Elusive Cloud-Forming Chemical on Ancient Brown Dwarf

September 9, 2025

Physical Neural Networks: Pioneering Sustainable AI for the Future

September 9, 2025

Record-Breaking Precision Attained for a Key Fundamental Physical Parameter

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gestational Hypoxia Boosts Neonatal Guinea Pig Brain Permeability

Revamping Stage IV Lung Cancer Care Through Digital Networks

Eco-Friendly Nutrient Management with Biostimulants in Crops

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.