• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, November 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study of brine discharge from desalination plant finds good news and bad news

Bioengineer by Bioengineer
January 31, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Brine discharged from the Carlsbad Desalination Plant raises offshore salinity levels more than permitted, but researchers found no direct local impacts on sea life

IMAGE

Credit: Don Potts


Before the Carlsbad Desalination Plant in Southern California began operations in 2015, scientists at UC Santa Cruz recognized an important opportunity to study the effects of the high-salinity brine that would be discharged from the plant into coastal waters. Starting in 2014, they collected measurements of water chemistry and biological indicators in the area so they could compare conditions before and after the plant began discharging brine into the ocean.

The results of their study, published January 25 in Water, include good news and bad news. The good news is that they found no significant changes in the organisms living on the seafloor and other biological indicators. The researchers attributed this to the long history of industrial activities in the area, including cooling water discharge from a power plant adjacent to the desalination plant, which had already perturbed the natural setting.

The bad news in the study is that the salinity level in the discharge zone exceeded the permitted level, and the salinity plume extended much farther offshore than permitted under the California Ocean Plan. Senior author Adina Paytan, a research professor in the Institute of Marine Sciences at UC Santa Cruz, said the study provides valuable information for planners considering where to locate future desalination plants and what discharge technologies to use.

“Desalination is one solution for addressing our water needs in densely populated coastal areas. It can work if done right, and our study highlights some areas where planning and monitoring can be improved,” Paytan said.

She noted that all the right steps were taken during the 14 years of planning for the Carlsbad Desalination Plant, including modeling of the discharge system to ensure that the brine would be effectively diluted as it mixed with ocean water. “They did what they were supposed to do, and the fact that it still wasn’t sufficient means that somehow the models being used are not good enough,” Paytan said.

Technologies are available that could reduce the impact of the brine on salinity levels at the site, she said. Currently the plant mixes the brine with cooling water from the power plant before discharging it through a channel extending about 50 meters offshore.

“The combined discharge is a good approach, but they might need to dilute it more,” Paytan said. “They could also use a diffusor system, which is basically a pipe with lots of small holes in it that spreads out the discharge over a larger area so the mixing potential is higher.”

The study also suggests that desalination plants should be located away from areas where there are sensitive habitats or intact coastal ecosystems that might be disrupted by the brine discharge. “If you want less impact, you might as well do it where the natural environment has already been impacted by previous and ongoing human activities,” Paytan said.

###

First author Karen Lykkebo Petersen, now at Stockholm University, led the study as a graduate student at UC Santa Cruz. Other coauthors include UCSC researchers Nadine Heck, Borja Reguero, Donald Potts, and Armen Hovagimian. This work was funded by the National Science Foundation.

Media Contact
Tim Stephens
[email protected]
831-459-4352

Related Journal Article

http://dx.doi.org/10.3390/w11020208

Tags: BiologyEarth ScienceEcology/EnvironmentHydrology/Water Resources
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

C-Reactive Protein-Albumin-Lymphocyte Index: Sepsis Insights Unveiled

November 27, 2025
Mountain Frogs’ Dietary Adaptations to Climate Change

Mountain Frogs’ Dietary Adaptations to Climate Change

November 27, 2025

Transposable Elements Shape Immune Cell Regulatory Landscapes

November 27, 2025

Analyzing Odorant-Binding Proteins in Bemisia tabaci

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    103 shares
    Share 41 Tweet 26
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Prospekta Boosts Cognitive Function in Aging Rats

Staphylococcus aureus Triggers Gasdermin A Keratinocyte Pyroptosis

C-Reactive Protein-Albumin-Lymphocyte Index: Sepsis Insights Unveiled

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.