• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Study: Ice flow is more sensitive to stress than previously thought

Bioengineer by Bioengineer
March 10, 2022
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The rate of glacier ice flow is more sensitive to stress than previously calculated, according to a new study by MIT researchers that upends a decades-old equation used to describe ice flow.

Ice Flow

Credit: Photo: Joanna Millstein

The rate of glacier ice flow is more sensitive to stress than previously calculated, according to a new study by MIT researchers that upends a decades-old equation used to describe ice flow.

Stress in this case refers to the forces acting on Antarctic glaciers, which are primarily influenced by gravity that drags the ice down toward lower elevations. Viscous glacier ice flows “really similarly to honey,” explains Joanna Millstein, a PhD student in the Glacier Dynamics and Remote Sensing Group and lead author of the study. “If you squeeze honey in the center of a piece of toast, and it piles up there before oozing outward, that’s the exact same motion that’s happening for ice.”

The revision to the equation proposed by Millstein and her colleagues should improve models for making predictions about the ice flow of glaciers. This could help glaciologists predict how Antarctic ice flow might contribute to future sea level rise, although Millstein said the equation change is unlikely to raise estimates of sea level rise beyond the maximum levels already predicted under climate change models.

“Almost all our uncertainties about sea level rise coming from Antarctica have to do with the physics of ice flow, though, so this will hopefully be a constraint on that uncertainty,” she says.

Other authors on the paper, published in Nature Communications Earth and Environment, include Brent Minchew, the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric, and Planetary Sciences, and Samuel Pegler, a university academic fellow at the University of Leeds.

Benefits of big data

The equation in question, called Glen’s Flow Law, is the most widely used equation to describe viscous ice flow. It was developed in 1958 by British scientist J.W. Glen, one of the few glaciologists working on the physics of ice flow in the 1950s, according to Millstein.

With relatively few scientists working in the field until recently, along with the remoteness and inaccessibility of most large glacier ice sheets, there were few attempts to calibrate Glen’s Flow Law outside the lab until recently. In the recent study, Millstein and her colleagues took advantage of a new wealth of satellite imagery over Antarctic ice shelves, the floating extensions of the continent’s ice sheet, to revise the stress exponent of the flow law.

“In 2002, this major ice shelf [Larsen B] collapsed in Antarctica, and all we have from that collapse is two satellite images that are a month apart,” she says. “Now, over that same area we can get [imagery] every six days.”

The new analysis shows that “the ice flow in the most dynamic, fastest-changing regions of Antarctica — the ice shelves, which basically hold back and hug the interior of the continental ice — is more sensitive to stress than commonly assumed,” Millstein says. She’s optimistic that the growing record of satellite data will help capture rapid changes on Antarctica in the future, providing insights into the underlying physical processes of glaciers.   

But stress isn’t the only thing that affects ice flow, the researchers note. Other parts of the flow law equation represent differences in temperature, ice grain size and orientation, and impurities and water contained in the ice — all of which can alter flow velocity. Factors like temperature could be especially important in understanding how ice flow impacts sea level rise in the future, Millstein says.

Cracking under strain

Millstein and colleagues are also studying the mechanics of ice sheet collapse, which involves different physical models than those used to understand the ice flow problem. “The cracking and breaking of ice is what we’re working on now, using strain rate observations,” Millstein says.

The researchers use InSAR, radar images of the Earth’s surface collected by satellites, to observe deformations of the ice sheets that can be used to make precise measurements of strain. By observing areas of ice with high strain rates, they hope to better understand the rate at which crevasses and rifts propagate to trigger collapse.

The research was supported by the National Science Foundation.

###

Written by Becky Ham, MIT News correspondent

 

Paper: “Ice viscosity is more sensitive to stress than commonly assumed”

https://www.nature.com/articles/s43247-022-00385-x



DOI

10.1038/s43247-022-00385-x

Article Title

“Ice viscosity is more sensitive to stress than commonly assumed”

Share12Tweet8Share2ShareShareShare2

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....