• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study gives new perspective on production of blood cells and immune cells

Bioengineer by Bioengineer
March 21, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers tracked and quantified the production of different kinds of blood cells and immune cells to understand how the body maintains a balanced supply

A healthy adult makes about 2 million blood cells every second, and 99 percent of them are oxygen-carrying red blood cells. The other one percent are platelets and the various white blood cells of the immune system. How all the different kinds of mature blood cells are derived from the same “hematopoietic” stem cells in the bone marrow has been the subject of intense research, but most studies have focused on the one percent, the immune cells.

“It’s a bit odd, but because red blood cells are enucleated and therefore hard to track by genetic markers, their production has been more or less ignored by the vast number of studies in the past couple of decades,” said Camilla Forsberg, professor of biomolecular engineering in the Baskin School of Engineering at UC Santa Cruz.

In a new study, published March 21 in Stem Cell Reports, Forsberg’s lab overcame technical obstacles to provide a thorough accounting of blood cell production from hematopoietic stem cells. Their findings are important for understanding disorders such as anemia, diseases of the immune system, and blood cancers such as leukemias and lymphomas.

“We’re trying to understand the balance of production of blood cells and immune cells, which goes wrong in many kinds of disorders,” Forsberg said.

The process by which hematopoietic stem cells give rise to mature blood cells involves multiple populations of progenitor cells that become progressively more committed to a specific “fate” as they develop into fully mature cells. A major fork in the road is between “lymphoid progenitors,” which give rise to white blood cells called lymphocytes, and “myeloid progenitors,” which give rise to other kinds of white blood cells, as well as red blood cells and platelets. The majority of cells in the bone marrow are in the myeloid lineage.

A key finding of the new study is that all progenitor cells with myeloid potential produce far more red blood cells than any other cell type. This was surprising because many previous studies in which progenitor cells were grown in cell cultures (“in vitro”) found they had limited capacity to produce red blood cells and platelets. Forsberg said those results now appear to be an artifact of the culture conditions.

“It’s been hard to make sense of a lot of those experiments, because we know our bodies need to make a lot of red blood cells and platelets,” she said. “Our results show that these progenitor cells retain a lot of red blood cell potential. In fact, we propose that red blood cell production is the default pathway.”

In experiments led by first author Scott Boyer, a graduate student in Forsberg’s lab, researchers transplanted different progenitor cell populations into mice and tracked the production of red blood cells as well as platelets (the second largest component of blood) and immune cells. Boyer was also able to transplant single progenitor cells and then identify the blood and immune cells it produced.

By quantifying the numbers of mature blood cells produced from transplanted progenitors, the researchers were able to show that red blood cells were by far the most abundant cell type produced by every type of progenitor cell, with the exception of lymphoid progenitors. Their findings led to the development of a model of hematopoietic differentiation that focuses on red blood cells as the default pathway for all myeloid progenitors.

###

In addition to Forsberg and Boyer, the coauthors of the paper include Smrithi Rajendiran, Anna Beaudin, Stephanie Smith-Berdan, Praveen Muthuswamy, Jessica Perez-Cunningham, Eric Martin, Christa Cheung, Herman Tsang, and Mark Landon, all at the UC Santa Cruz Institute for the Biology of Stem Cells. This work was supported by the National Institutes of Health and the California Institute for Regenerative Medicine.

Media Contact
Tim Stephens
[email protected]
http://dx.doi.org/10.1016/j.stemcr.2019.02.007

Tags: BiologycancerDevelopmental/Reproductive BiologyHematologyMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

Breakthrough Study Reveals New Methods to Protect Nerve Cells from ALS

August 19, 2025
blank

Does Your Brain React to What You Do or How You Do It?

August 19, 2025

Aramchol Enhances Regorafenib Efficacy in Treating Gastrointestinal Tumors

August 19, 2025

Mycorrhizal Fungi Regulate Root-Seed Coordination Globally

August 19, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Ionic Conductivity in Garnet Electrolytes with Sr-Ta

Non-Equilibrium Effects Driven by Rarefaction in Shock Wave and Boundary Layer Interactions

Creating ZnCr2S4 and ZnCr2S4/rGO for Energy Storage

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.