• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study: First clinical proof that genotypes determine if Alzheimer’s drugs will work

Bioengineer by Bioengineer
July 17, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UB researchers’ insights into a target that succeeded in animals but failed in humans reveal a new paradigm for screening Alzheimer’s drugs

BUFFALO, N.Y. — University at Buffalo researchers have determined that a human gene present in 75 % of the population is a key reason why a class of drugs for Alzheimer’s disease seemed promising in animal studies only to fail in human studies.

The researchers say the work suggests that in different Alzheimer’s disease patients, different mechanisms are at work that determine whether or not a given therapy will be effective.

While a previous study by the researchers studied the function of the gene in tissue culture, this is the first time that drug effect based on a patients’ genotype has been clinically shown.

The UB researchers caution that the study has its limitations and randomized double blind studies are needed to confirm the results.

The research was presented today at the annual Alzheimer’s Association International Conference (AAIC) in Los Angeles. It was conducted on data from a ten-year, longitudinal, multicenter cohort study by the Texas Alzheimer Research and Care Consortium (TARCC) on 345 Alzheimer’s patients. The UB researchers are collaborators on the TARCC.

Proof of concept

“This research provides proof of concept that since different mechanisms are at work in Alzheimer’s in different patients, we need to develop more personalized treatments that will prove more effective in individuals,” said Kinga Szigeti, MD, PhD, lead investigator, director of UB’s Alzheimer’s Disease and Memory Disorders Center, part of UBMD Neurology, and associate professor of neurology in the Jacobs School of Medicine and Biomedical Sciences at UB.

The gene, CHRFAM7A, is a fusion between a gene that codes for an Alpha 7 receptor for acetylcholine, a neurotransmitter involved in memory and learning and long associated with Alzheimer’s, and a kinase, a type of enzyme.

Szigeti explained that the gene is present in two flavors, a functional gene and one that is not made into protein, data the UB team also is presenting this week at AAIC.

“This splits the population 1-to-3 between non-carriers and carriers,” said Szigeti. CHRFAM7A has been implicated in many neuropsychiatric disorders, such as schizophrenia and bipolar disease.

Szigeti explained that three of the four drugs now available for Alzheimer’s work by stimulating all receptors that respond to acetylcholine. More specific drugs for Alpha 7 have been in development for over 10 years but failed when moved to the clinical phase.

The human fusion gene modulates the Alpha 7 receptor, one of the receptors binding amyloid beta, the protein that is the hallmark of Alzheimer’s that disrupts neuronal communication.

“Since this human fusion gene was not present in the animal models and screening systems used to identify drugs, 75 % of Alzheimer’s patients who do carry this gene are less likely to benefit and therefore are at a disadvantage,” she said. “This may account for the translational gap.”

Gene carriers

“With this study, we compared the effect of cholinesterase inhibitors in patients who did or didn’t carry this gene,” said Szigeti. “People who don’t have the gene respond better to the drugs available now.”

She added that neurons vulnerable to Alzheimer’s express Alpha 7 and that may be the reason why they die first.

“Our work confirms that Alpha 7 is a very important target for treating Alzheimer’s but the right model–a human model–has to be used when testing new drugs,” said Szigeti.

###

The findings suggest that a more personalized approach to each patient may be required, based on their CHRFAM7A genotype. One drug may work in 25% of the patients, while another will work in 75%.

Co-authors with Szigeti are Aya Ouf, MD, research assistant in the Department of Neurology; Joan S. Reisch, PhD, of the University of Texas Southwestern Medical Center; Valory Pavlik of Baylor College of Medicine; Gregory Wilding, PhD, chair and professor, Department of Biostatistics, and Ziquiang Chen, both of the UB School of Public Health and Health Professions.

The work was funded by the Alzheimer’s Association, the Clinical and Translational Science Award pilot grant program, the Edward A. and Stephanie E. Fial Fund, the Community Foundation for Greater Buffalo and the Dr. Louis Sklarow Memorial Trust.

Media Contact
Ellen Goldbaum
[email protected]
http://www.buffalo.edu/news/releases/2019/07/017.html

Tags: AlzheimerMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Excessive Intake of Ultra-Processed Foods Associated with Systemic Inflammation

September 9, 2025

Cellular Acyl-CoA Profiling Uncovers Mitochondrial CoA Transporters

September 9, 2025

Targeting NAD+ in Clinics: New Strategies and Challenges

September 9, 2025

Bee-Sting Inspired Microneedles from Chung-Ang University Poised to Transform Drug Delivery

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ultrasonic Regeneration Revives Nano-Phase Change Emulsions for Enhanced Low-Temperature Performance

City of Hope Unveils Innovative National Clinical Trials Model to Fast-Track Cancer Research

Excessive Intake of Ultra-Processed Foods Associated with Systemic Inflammation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.