• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, May 16, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study finds distinct biological ages across individuals’ various organs and systems

Bioengineer by Bioengineer
March 8, 2022
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It’s common to say that someone looks either younger or older than their chronological age, but aging is more than skin deep. Our various organs and systems may have different ages, at least from a biological perspective. In a study published March 8 in the journal Cell Reports, an international team of investigators used biomarkers, statistical modeling, and other techniques to develop tools for measuring the biological ages of various organ systems. Based on their findings, the researchers report that there are multiple “clocks” within the body that vary widely based on factors including genetics and lifestyle in each individual.

Estimating biological ages of organs and systems

Credit: Nie, Li, and Li et al./Cell Reports

It’s common to say that someone looks either younger or older than their chronological age, but aging is more than skin deep. Our various organs and systems may have different ages, at least from a biological perspective. In a study published March 8 in the journal Cell Reports, an international team of investigators used biomarkers, statistical modeling, and other techniques to develop tools for measuring the biological ages of various organ systems. Based on their findings, the researchers report that there are multiple “clocks” within the body that vary widely based on factors including genetics and lifestyle in each individual.

“Our study used approaches that can help improve our understanding of aging and—more importantly—could be used some day in real healthcare practice,” says co-corresponding author Xun Xu of the Beijing Genomics Institute (BGI) and China National GeneBank (CNGB) in Shenzhen, China. “We used biomarkers that could be identified from blood and stool samples plus some measurements from a routine body checkup.”

The concept of evaluating people’s biological aging rates has been around since the 1970s, but earlier studies were focused either on developing methods for estimating one centralized aging index or studying the molecular aging biomarkers using tissues and cell cultures outside the body.

“There has been a lack of practical applications in a population-based sample for precisely estimating the aging rates of live people’s organs and systems,” says co-corresponding author Xiuqing Zhang, also of BGI and CNGB. “So we decided to design one.”

To do this research, the investigators recruited 4,066 volunteers living in the Shenzhen area to supply blood and stool samples and facial skin images and to undergo physical fitness examinations. The volunteers were between the ages of 20 and 45 years; 52% were female and 48% were male. “Most human aging studies have been conducted on older populations and in cohorts with a high incidence of chronic diseases,” says co-corresponding author Brian Kennedy of the National University of Singapore. “Because the aging process in young healthy adults is largely unknown and some studies have suggested that age-related changes could be detected in people as young as their 20s, we decided to focus on this age range.”

In total, 403 features were measured, including 74 metabolomic features, 34 clinical biochemistry features, 36 immune repertoire features, 15 body composition features, 8 physical fitness features, 10 electroencephalography features, 16 facial skin features, and 210 gut microbiome features. These features were then classified into nine categories, including cardiovascular-related, renal-related, liver-related, sex hormone, facial skin, nutrition/metabolism, immune-related, physical fitness-related, and gut microbiome features.

Because of the difference in sex-specific effects, the groups were divided into male and female. The investigators then developed an aging-rate index that could be used to correlate different bodily systems with each other. Based on their findings, they classified the volunteers either as aging faster or aging slower than their chronological age.

Overall, they discovered that biological ages of different organs and systems had diverse correlations, and not all were expected. Although healthy weight and high physical fitness levels were expected to have a positive impact, the investigators were surprised by other findings. For example, having a more diverse gut microbiota indicated a younger gut while at the same time having a negative impact on the aging of the kidneys, possibly because the diversity of species causes the kidneys to do more work.

The investigators also used their approach to look at other datasets, including the National Health and Nutrition Examination Survey from the US Center for Disease Control and Prevention and the Chinese Longitudinal Healthy Longevity Survey, which includes data on more than 2,000 centenarians with matched middle-aged controls. In addition, they looked at single nucleotide polymorphisms (SNPs) to determine whether differences could be explained by genetic factors. There, they did find certain pathways that could be associated with aging rates.

The researchers plan to regularly follow up with the study participants to track the development of aging and validate their findings. Future studies will use additional approaches for classifying features of aging and studying the interactions between organ systems.

They also plan to use single-cell technology to look at programmed aging in more detail. “It’s important to capture the cell-to-cell variation in an aging individual, as this will tell us important information about the heterogeneity within cell types and tissues and provide important insights into aging mechanisms,” says co-corresponding author Claudio Franceschi of Lobachevsky State University in Russia.

###

This research was supported by the National Key Research and Development Program of China, the National Natural Science Foundation of China, the Technology and Innovation Commission of Shenzhen Municipality, and the Technology and Innovation Commission of Shenzhen Municipality.

Cell Reports, Nie, Li, and Li et al. “Distinct biological ages of organs and systems identified from a multi-omics study” https://www.cell.com/cell-reports/fulltext/S2211-1247(22)00186-3 

Cell Reports (@CellReports), published by Cell Press, is a weekly open access journal that publishes high-quality papers across the entire life sciences spectrum. The journal features reports, articles, and resources that provide new biological insights, are thought-provoking, and/or are examples of cutting-edge research. Visit: http://www.cell.com/cell-reports. To receive Cell Press media alerts, contact [email protected]



Journal

Cell Reports

DOI

10.1016/j.celrep.2022.110459

Method of Research

Observational study

Subject of Research

People

Article Title

Distinct biological ages of organs and systems identified from a multi-omics study

Article Publication Date

8-Mar-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Weights for weight loss.

Weights can be weapons in battle against obesity

May 16, 2022
Race and lung disease diagnosis

Many Black men with “normal” lung function may actually have emphysema

May 15, 2022

Modifying the body’s immune system to help treat Type 1 diabetes

May 13, 2022

“Growing end” of inflammation discovered

May 13, 2022

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    42 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

UrbanizationZoology/Veterinary ScienceVirusVaccinesWeaponryVehiclesUniversity of WashingtonUrogenital SystemWeather/StormsVaccineViolence/CriminalsVirology

Recent Posts

  • COVID-19, MIS-C and Kawasaki disease share same immune response
  • Striking new snake species discovered in Paraguay
  • Extraterrestrial stone brings first supernova clues to Earth
  • Lights, catalyst, reaction! Converting CO2 to formic acid using an alumina-supported, iron-based compound
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....