• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stuck in a rut: Ocean acidification locks algal communities in a simplified state

Bioengineer by Bioengineer
January 15, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba find that ocean acidification restricts algal communities to a state of low biodiversity and complexity

IMAGE

Credit: University of Tsukuba

Tsukuba, Japan – Out with the old, in with the new, as the New Year’s saying goes, but not where the marine environment is concerned. Researchers from Japan have discovered that ocean acidification keeps algal communities locked in a simplified state of low biodiversity.

In a study published on 11th January 2021 in Global Change Biology, researchers from the University of Tsukuba have revealed that as oceanic carbon dioxide levels rise, the biodiversity and ecological complexity of marine algal communities decline.

Ocean acidification is the continuing increase in the acidity of the Earth’s oceans, caused by the absorption of atmospheric carbon dioxide (CO2). The largest contributor to this acidification is human-caused CO2 emissions from the burning of fossil fuels.

“Ocean acidification is harmful to a lot of different marine organisms,” says lead author of the study Professor Ben P. Harvey. “This affects not only ecosystem functions, but the goods and services that people get from marine resources.”

To examine the changes caused by CO2-enriched waters in algal communities, the researchers anchored tiles in the ocean for the algae to grow on. The tiles were placed in reference conditions (i.e., ones that represent the structure and function of biological communities subject to no/very minor human-caused disturbances) and acidified conditions. The team used a natural CO2 seep for the acidified conditions to represent the CO2 conditions at the end of this century, and compared differences between the cooler months (January to July) and warmer months (July to January).

“We found that the tiles ended up being taken over by turf algae in the acidified conditions, and the communities had lower diversity, complexity and biomass,” explains Professor Harvey. “This pattern was consistent throughout the seasons, keeping these communities locked in simplified systems that had low biodiversity.”

The team also transplanted established communities between the two conditions. The transplanted communities ultimately matched the other communities around them (i.e., high biodiversity, complexity and biomass in the reference conditions, and vice versa for the acidified conditions).

“By understanding the ecological processes that change community structure, we can better evaluate how ocean acidification is likely to alter communities in the future,” says Professor Harvey.

The results of this study highlight that if atmospheric CO2 emissions are not reduced, we may see an increased loss of large algal habitats (such as kelp forests). But the study also shows that shallow-water marine communities can recover if significant reductions in CO2 emissions are achieved, such as those urged by the Paris Agreement.

###

The article, “Ocean acidification locks algal communities in a species-poor early successional stage,” was published in Global Change Biology at DOI: 10.1111/gcb.15455

Media Contact
Naoko Yamashina
[email protected]

Related Journal Article

http://dx.doi.org/10.1111/gcb.15455

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Restoring Order in Dividing Cancer Cells Could Halt Metastasis, Study Finds

October 3, 2025
Neonatal Encephalopathy: Advances in MRI and Spectroscopy

Neonatal Encephalopathy: Advances in MRI and Spectroscopy

October 3, 2025

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Restoring Order in Dividing Cancer Cells Could Halt Metastasis, Study Finds

Neonatal Encephalopathy: Advances in MRI and Spectroscopy

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.