• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 20, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Structures in seaweed shed light on sustainability

Bioengineer by Bioengineer
December 20, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: JI Shiqi


Brown algae are not just seaweed that floats in the ocean and tangles swimmers’ feet – it also contains a secret. In its cell wall, brown algae hold polysaccharide alginate, one of the most abundant carbohydrates in the ocean. A major food source for several organisms, the alginate absorbs carbon dioxide and can be converted into ethanol.

Researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences are now studying the organisms to understand this mechanism, and they’re making some discoveries along the way.

“The abundance of these seaweeds has made them an attractive and important source of renewable biomass for biofuel production,” said JI Shiqi, research assistant professor in the Shandong Provincial Key Laboratory of Energy Genetics.

JI is part of an international team from China and the United Kingdom who is working to better understand how the alginate is processed into ethanol by organisms. By examining the enzymes that break down the alginate, the researchers may be able to harness the natural process to produce biofuel. During this process, they identified previously unknown enzymatic families that contribute to the bioconversion.

Their findings about the full structure of one such enzyme were published in Journal of Biological Chemistry on October 17.

The enzyme, called an alginate lyase, breaks down the alginate so it can be converted into other products. There are currently 37 identified lyase families that break down polysaccharides, which are structures that contain multiple sugars. Of those 37 families, nine specifically degrade alginates and seven of those nine have had their structures fully described.

JI and the team identified a new alginate lyase in a heat-loving bacterium that can directly utilize brown algae and ferment its components to ethanol with high-yield.

“The bacterium contains at least four alginate lyases, including a number of novel lyases that represent totally new polysaccharide lyase families,” JI said.

The researchers focused on imaging the structure of one alginate lyase, dubbed “Dp0100,” to better understand its molecular mechanisms in processing alginate into ethanol. The imaging study also led to a better understanding of the structure specificity, catalysis and evolution of alginate lyases with multiple domain sites, according to JI.

“While the mechanism of Dp0100’s thermostability is not well understood yet, this research has furthered our understanding of the structure-function and evolutionary relationships within this important class of lyases,” JI said.

The researchers will continue to study the alginate lyases, as well as pursue structural studies of other polysaccharide lyase families with the ultimate goal of determining the full function of alginate bioconversion.

###

This work was supported in part the National Natural Science Foundation of China, the Qingdao Municipal Science and Technology Bureau of China, the Royal Society, the International Exchanges 2017 Cost Share Programme and the China Scholarship Council.

Media Contact
CHENG Jing
[email protected]

Original Source

http://english.cas.cn/newsroom/research_news/life/201912/t20191219_227939.shtml

Related Journal Article

http://dx.doi.org/10.1074/jbc.RA119.010716

Tags: BiologyMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Researchers Engineer Cells to Develop Biological Qubits in Pioneering Multidisciplinary Breakthrough

Researchers Engineer Cells to Develop Biological Qubits in Pioneering Multidisciplinary Breakthrough

August 20, 2025
Breakthrough Discoveries in Tendinopathy Treatment: Unveiling the Active Components of Rhizoma Coptidis

Breakthrough Discoveries in Tendinopathy Treatment: Unveiling the Active Components of Rhizoma Coptidis

August 20, 2025

Engineered ‘Superfood’ Supplement Enhances Bee Colony Reproduction, Aiding Conservation Efforts

August 20, 2025

Lead-Resistant Lizards in New Orleans Offer Insights into Fighting Lead Poisoning

August 20, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    80 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Why Mental Health Guidance Can Increase Your To-Do List

Pilot Study Unveils How Music Therapy Eases Pain Following Pancreatic Surgery

UCLA and UC Santa Barbara’s BioPACIFIC MIP Secures Renewed NSF Funding to Propel AI-Driven Biobased Materials Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.