• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stress hormone helps control the circadian rhythm of brain cells

Bioengineer by Bioengineer
November 8, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Neuroscience, University of Copenhagen


As day turns into night, and night turns into day, the vast majority of living organisms follow a fixed circadian rhythm that controls everything from sleep needs to body temperature.

This internal clock is found in everything from bacteria to humans and is controlled by some very distinct hereditary genes, known as clock genes.

In the brain, clock genes are particularly active in the so-called suprachiasmatic nucleus. It sits just above the point where the optic nerves cross and sends signals to the brain about the surrounding light level. From here, the suprachiasmatic nucleus regulates the rhythm of a number of other areas of the body, including the cerebellum and the cerebral cortex.

However, these three areas of the brain are not directly linked by neurons, and this made researchers at the University of Copenhagen curious. Using test rats, they have now demonstrated that the circadian rhythm is controlled by means of signalling agents in the blood, such as the stress hormone corticosterone.

‘In humans, the hormone is known as cortisol, and although the sleep rhythm in rats is the opposite of ours, we basically have the same hormonal system’, says Associate Professor Martin Fredensborg Rath of the Department of Neuroscience.

He explains that recent years have seen an increasing, scientific focus on research on clock genes, one reason being that previous research on clock genes have found a correlation between depression and irregularities in the body’s circadian rhythms.

New Method with Medical Micropumps

In the study with the stress hormone corticosterone, the researchers removed the suprachiasmatic nucleus in a number of rats. As expected, this removed the circadian rhythm of the animals.

Among other things, the body temperature and activity level of the rats went from circadian oscillations to a more constant state. The same was true of the otherwise rhythmic hormone production.

However, the circadian rhythm of the cerebellum was restored when the rats were subsequently implanted with a special programmable micropump, normally used to dose medication in specific quantities.

In this case, however, the researchers used the pump to emit carefully metered doses of corticosterone at different times of the day and night, similar to the animals’ natural rhythm.

‘Nobody has used these pumps for anything like this before. So technically, we were onto something completely new’, says Martin Fredensborg Rath.

For that reason, the researchers spent the best part of a year carrying out a large number of control tests to ensure that the new method was valid.

Interaction Between Neurons and Hormones

As mentioned, the new method paid off. With the artificial corticosterone supplement, researchers were again able to read a rhythmic activity of clock genes in the cerebellum of the rats, even though their suprachiasmatic nucleus had been removed.

‘This is hugely interesting from a scientific point of view, because it means that we have two systems – the nervous system and the hormonal system – that communicate perfectly and influence one another. All in the course of a reasonably tight 24-hour programme’, says Martin Fredensborg Rath.

With the test results and the new method in the toolbox, the researchers’ next step is to study other rhythmic hormones in a similar manner, including hormones from the thyroid gland.

###

Media Contact
Martin Fredensborg Rath
[email protected]
0045-93-56-53-94

Original Source

https://healthsciences.ku.dk/newsfaculty-news/2019/11/stress-hormone-helps-control-the-circadian-rhythm-of-brain-cells/

Related Journal Article

http://dx.doi.org/10.1159/000503720

Tags: BiochemistryBiomedical/Environmental/Chemical EngineeringBiotechnologyCircadian RhythmEndocrinologyMedicine/HealthneurobiologyNeurochemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Weather’s Impact on Anopheles Mosquito Populations in Lagos

August 23, 2025
Ghost Spider’s Maternal Care vs. New Fly Species

Ghost Spider’s Maternal Care vs. New Fly Species

August 23, 2025

Temperature and Desiccation Impact Acinetobacter baumannii Cells

August 23, 2025

Epstein-Barr Virus Protein EBNA1 Drives Oncogene Activation in Cervical Cancer Cells

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Weather’s Impact on Anopheles Mosquito Populations in Lagos

Ghost Spider’s Maternal Care vs. New Fly Species

DWI-Guided vs. MRI-Based IMRT in Head & Neck

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.