• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Story tips: Mining for COVID, rules to grow by and the 3D connection

Bioengineer by Bioengineer
May 18, 2020
in Science News
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dasha Herrmannova/Oak Ridge National Laboratory, U.S. Dept. of Energy

Computing – Mining for COVID-19 connections

Scientists have tapped the immense power of the Summit supercomputer at Oak Ridge National Laboratory to comb through millions of medical journal articles to identify potential vaccines, drugs and effective measures that could suppress or stop the spread of COVID-19.

A team comprising researchers from ORNL and Georgia Tech are using artificial intelligence methods designed to unearth relevant information from about 18 million available research documents. They looked for connections among 84 billion concepts and cross-referenced keywords associated with COVID-19 – such as high fever, dry cough and shortness of breath – with existing medical solutions.

“Our goal is to assist doctors’ and researchers’ ability to identify information about drug therapies that are already approved by the U.S. Federal Drug Administration,” said ORNL’s Ramakrishnan “Ramki” Kannan.

A massive subset of 6 million documents dated between 2010 and 2015 took 80 minutes, and the entire 18 million will take less than a day to run on Summit. Results will be shared with medical researchers for feedback, which will inform adjustments to improve future calculations.

Ecology – Rules to grow by

An international team of scientists found that rules governing plant growth hold true even at the edges of the world in the Arctic tundra. This new knowledge is informing predictive models that examine how critical factors such as carbon storage could change as temperatures warm.

Using the largest database of tundra plant traits yet compiled, researchers found that the strategies Arctic plants use to grow and acquire nutrients — from “live fast and die young” to “slow and steady” — are similar to strategies originally documented in plants that thrive in tropical and temperate regions.

“Even in the extreme conditions of the tundra, plants experience the same economic trade-offs in balancing growth and resources,” said Oak Ridge National Laboratory’s Colleen Iversen. “However, this study focused primarily on aboveground traits. The cold world beneath our feet is still largely unexplored.”

Iversen is contributing to a similar international effort focused on the Arctic underground.

Batteries – The 3D connection

Oak Ridge National Laboratory researchers have developed a thin film, highly conductive solid-state electrolyte made of a polymer and ceramic-based composite for lithium metal batteries.

The electrolyte’s novel design, which was detailed in a study, is a three-dimensional interconnected structure that can provide mechanical robustness and high lithium ionic conductivity at room temperature.

Lithium metal may potentially increase the energy density in rechargeable batteries beyond what is currently achieved by commercial lithium-ion batteries. The key to improving density lies in developing a powerful thin solid electrolyte.

Solid polymer electrolytes are flexible and low cost but have low conductivity while ceramic-based electrolytes offer better conductivity but are too brittle to process.

“We combined the advantages of both materials to form a thin composite film,” ORNL’s Xi Chen said. “The film was formed by partially sintering a three-dimensionally interconnected ceramic structure and the polymer filled the pores to make a robust membrane.”

###

Media Contact: Jennifer Burke, 865.414.6835, [email protected]

Image: https://www.ornl.gov/sites/default/files/2020-05/Batteries_3D%20story%20tip_3.jpg

Caption: A thin film solid-state electrolyte with a three-dimensionally interconnected structure was fabricated by ORNL researchers. The structure increased conductivity through the ceramic base. Credit: Xi Chen/Oak Ridge National Laboratory, U.S. Dept. of Energy

Media Contact: Sara Shoemaker, 865.576.9219, [email protected]

Image: https://www.ornl.gov/sites/default/files/2020-05/pubmedconnections-covid-19-2.png

Caption: Using ORNL’s Summit supercomputer, scientists can comb through millions of medical journal articles looking for possible connections among FDA-approved drug therapies and known COVID-19 symptoms. Credit: Dasha Herrmannova/Oak Ridge National Laboratory, U.S. Dept. of Energy

Media Contact: Kim Askey, 865.576.2841, [email protected]

Image: https://www.ornl.gov/sites/default/files/2020-05/EriophorumInflorescences_V.Salmon_072013.JPG

Caption: Eriophorum vaginatum flourishes in the tundra biome at the edge of the world, at the Next-Generation Ecosystem Experiments Arctic field site at the Kougarok Hillslope outside of Nome, Alaska. Credit: Verity Salmon/Oak Ridge National Laboratory, U.S. Dept. of Energy

Image: https://www.ornl.gov/sites/default/files/2020-05/Lone%20musk%20ox.JPG

Caption: A lone musk ox surveys the surrounding fall colors of tundra vegetation at the Next-Generation Ecosystem Experiments Arctic field site outside of Nome, Alaska. Credit: Verity Salmon/Oak Ridge National Laboratory, U.S. Dept. of Energy

Media Contact
Sara Shoemaker
[email protected]

Original Source

https://www.ornl.gov/news/story-tips

Related Journal Article

http://dx.doi.org/10.1016/j.ensm.2019.12.031

Tags: Computer ScienceEnergy/Fuel (non-petroleum)GeneticsIndustrial Engineering/ChemistryPlant SciencesPolymer ChemistryTechnology/Engineering/Computer ScienceVirology
Share12Tweet8Share2ShareShareShare2

Related Posts

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

October 3, 2025
blank

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

October 3, 2025

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

October 3, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Encapsulated Pseudomonas Controls Pistachio Gummosis Effectively

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance COâ‚‚ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.