• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stopping the sickness: Protein may be key to blocking a nauseating bacterium

Bioengineer by Bioengineer
March 30, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WSU

PULLMAN, Wash. – Washington State University researchers have discovered a protein that could be key to blocking the most common bacterial cause of human food poisoning in the United States.

Chances are, if you’ve eaten undercooked poultry or cross contaminated food by washing raw chicken, you may be familiar with the food-borne pathogen.

“Many people that get sick think, ‘oh, that’s probably Salmonella,’ but it is even more likely it’s Campylobacter,” said Nick Negretti (’20 Ph.D.), a lead member of the research team in Michael Konkel’s Laboratory in WSU’s School of Molecular Biosciences.

According to a study on the research recently published in Nature Communications, a secreted protein known as CiaD facilitates cell entry by Campylobacter and takes control of important cell processes by changing the composition of a protein complex inside the cell.

By gaining insight into the infection process and the specific actions of the Campylobacter secreted proteins, the work gives the WSU team and the rest of the field a foundation to understanding why infections occur and persist.

Until the Konkel Lab’s latest finding, the functions of the bacterium’s proteins and how they infect the cell were largely unknown.

“We knew these things were happening, but we didn’t know how,” said Negretti. “Now, if we can stop this process, disease won’t happen.”

The work was funded by a 5-year, $1.9 million grant from the National Institutes of Health and builds on two decades of research in the Konkel Lab.

Most often known for the nausea, vomiting and bloody diarrhea that comes with it, once ingested, Campylobacter jejuni secretes proteins that infiltrate the cells lining the intestinal tract, which allows it to hide from the immune system.

The bacteria account for 400 to 500 million cases of diarrhea annually, and the World Health Organization recognizes it as a serious threat due to its antibiotic resistance.

The infection is also correlated with stunted linear growth in impoverished children, and in developed countries, a higher incidence of Guillain-Barré syndrome, when the body’s immune system attacks the nerves.

The research was a seven-year collaborative effort, using the latest molecular biology and biochemistry methods.

The work was done in partnership with researchers Geremy Clair and Joshua Adkins with the Pacific Northwest National Laboratory. Using mass spectroscopy, Adkins and Clair were able to study protein-to-protein interaction that helped the WSU researchers narrow their focus and uncover the target of CiaD.

Konkel said the research would not have been completed without post-doctoral fellow Prabhat Talukdar and graduate students Courtney Klappenbach and Cody Lauritsen leading the work through its final stretch amid the pandemic.

Now, the researchers are hopeful the work will lead to real-world solutions, in particular finding ways to prevent the pathogen from stunting growth in children.

“With this finding, we can speculate that processes like this that affect the cell could impact the intestinal cell’s ability to form the correct structures to absorb nutrients,” Negretti said. “While this is a mechanistic level of understanding, the answers to how the bacteria is specifically affecting cells in the body could have broader ranging impacts into understanding the public health importance of this pathogen.”

The team also looks forward to learning the functions of other secreted proteins.

A major breakthrough into understanding C. jejuni disease was made in 1999 when the Konkel Lab discovered that proteins are secreted from the bacterium. In 2009, the CiaD protein was identified by Jeffrey Christensen, a post-doctoral fellow in the laboratory.

“We then identified CiaD was delivered to the host cells in 2013,” Konkel said. “A major question for the past 20-years has been: what are these secreted proteins and what do they do? This is just the first protein to have an identified cell target.”

###

Media Contact
Mike Konkel
[email protected]

Original Source

https://news.wsu.edu/2021/03/30/stopping-sickness-protein-may-key-blocking-nauseating-bacterium/

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21579-5

Tags: BacteriologyBiologyCell BiologyDisease in the Developing WorldMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Assessing Habitat Suitability for Italy’s Unique Vertebrate

Assessing Habitat Suitability for Italy’s Unique Vertebrate

September 6, 2025
blank

Gene Duplication Linked to Egg Weight in Chickens

September 5, 2025

Can Spider Cocoons Offer Antimicrobial Benefits?

September 5, 2025

Triazophos Effects on Immune Responses in Snakehead Fish

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Assessing Habitat Suitability for Italy’s Unique Vertebrate

Revolutionary Electromagnetic Device Enhances Spinal Injury Research

Improving Sleep in Shift-Work Nurses: A Meta-Analysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.