• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Stevens team closes in on ‘holy grail’ of room temperature quantum computing chips

Bioengineer by Bioengineer
September 18, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Photons interact on chip-based system with unprecedented efficiency

IMAGE

Credit: Stevens Institute of Technology

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the other. Now, researchers at Stevens Institute of Technology have coaxed photons into interacting with one another with unprecedented efficiency — a key advance toward realizing long-awaited quantum optics technologies for computing, communication and remote sensing.

The team, led by Yuping Huang, an associate professor of physics and director of the Center for Quantum Science and Engineering, brings us closer to that goal with a nano-scale chip that facilitates photon interactions with much higher efficiency than any previous system. The new method, reported as a memorandum in the Sept. 18 issue of Optica, works at very low energy levels, suggesting that it could be optimized to work at the level of individual photons — the holy grail for room-temperature quantum computing and secure quantum communication.

“We’re pushing the boundaries of physics and optical engineering in order to bring quantum and all-optical signal processing closer to reality,” said Huang.

To achieve this advance, Huang’s team fired a laser beam into a racetrack-shaped microcavity carved into a sliver of crystal. As the laser light bounces around the racetrack, its confined photons interact with one another, producing a harmonic resonance that causes some of the circulating light to change wavelength.

That isn’t an entirely new trick, but Huang and colleagues, including graduate student Jiayang Chen and senior research scientist Yong Meng Sua, dramatically boosted its efficiency by using a chip made from lithium niobate on insulator, a material that has a unique way of interacting with light. Unlike silicon, lithium niobate is difficult to chemically etch with common reactive gases. So, the Stevens’ team used an ion-milling tool, essentially a nanosandblaster, to etch a tiny racetrack about one-hundredth the width of a human hair.

Before defining the racetrack structure, the team needed to apply high-voltage electrical pulses to create carefully calibrated areas of alternating polarity, or periodic poling, that tailor the way photons move around the racetrack, increasing their probability of interacting with eachother.

Chen explained that to both etch the racetrack on the chip and tailor the way photons move around it, requires dozens of delicate nanofabrication steps, each requiring nanometer precision. “To the best of our knowledge, we’re among the first groups to master all of these nanofabrication steps to build this system — that’s the reason we could get this result first.”

Moving forward, Huang and his team aim to boost the crystal racetrack’s ability to confine and recirculate light, known as its Q-factor. The team has already identified ways to increase their Q-factor by a factor of at least 10, but each level up makes the system more sensitive to imperceptible temperature fluctuations – a few thousands of a degree – and requires careful fine-tuning.

Still, the Stevens team say they’re closing in on a system capable of generating interactions at the single-photon level reliably, a breakthrough that would allow the creation of many powerful quantum computing components such as photonics logic gates and entanglement sources, which along a circuit, can canvass multiple solutions to the same problem simultaneously, conceivably allowing calculations that could take years to be solved in seconds.

We could still be a while from that point, Chen said, but for quantum scientists the journey will be thrilling. “It’s the holy grail,” said Chen, the paper’s lead author. “And on the way to the holy grail, we’re realizing a lot of physics that nobody’s done before.”

###

Media Contact
Thania Benios
[email protected]

Original Source

https://www.stevens.edu/news/stevens-team-closes-holy-grail-room-temperature-quantum-computing-chips

Related Journal Article

http://dx.doi.org/10.1364/OPTICA.6.001244

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Pioneer Innovative Method for Precise Experimental Measurement of the Unruh Effect

September 11, 2025
Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

Machine Embroidery Mimics Skin Tension Lines to Create Mass-Customizable Wearable Textiles

September 11, 2025

Perseverance Rover Reveals New Insights into Ancient Martian Chemistry

September 10, 2025

Unveiling the True Mechanisms of Catalysis in Metallic Nanocatalysts

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Discovering a Female-Specific Mechanism Regulating Energy Expenditure in Brown Fat

Dr. Michael Welsh Honored with Lasker Award for Groundbreaking Cystic Fibrosis Research

Mass General Brigham’s Kraft Center Reveals Winner and Finalists for 2025 Kraft Prize in Community Health Innovation

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.