• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, September 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Stereochemistry: Self-amplifying selectivity

Bioengineer by Bioengineer
December 5, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ludwig-Maximilians-Universitaet (LMU) in Munich chemist Oliver Trapp has designed and synthesized a catalyst which flexibly molds the handedness of the reaction products with which it interacts.

Many chemical compounds contain so-called chiral centers to which functional groups can be attached in either of two orientations. This gives rise to two different forms of the product which are mirror images of one another: Their spatial conformations are related to each other in the same way as right and left hands. Moreover, such configurational pairs – generally referred to as enantiomers – may exhibit different properties. For this reason, synthetic chemists are often faced with the problem of ensuring that the final product has the correct enantiomeric form. Oliver Trapp (Professor of Organic Chemistry at LMU since September 2016) and Golo Storch (a member of his previous research group at Heidelberg University, and currently at Yale University) now report the development of a catalyst that dynamically adapts to the stereochemistry of the compounds with which it interacts, and can progressively select for the desired enantiomer. The work is described in a paper which has just appeared in the journal Nature Chemistry.

Their system is based on a pair of molecular backbones that are known to interact with one another with enantiomeric selectivity. One of these serves as the carrier of the desired product while the other is equipped with a metal catalyst and flexible binding sites that recognize the product. The catalyst interacts transiently and repeatedly with the products of its own action, and can swiftly adjust the configuration of its binding sites. "We ourselves were surprised at how rapidly the catalyst adapts," Trapp says. These interactions effectively modify the structure of the catalyst in such a way that its stereoselectivity is enhanced. Once the catalyst has recognized the desired enantiomer, its selective efficiency improves with every further catalytic cycle. The final result of this self-amplifying action is that the end-products all have the same chiral structure.

This dynamic adaptability is of great interest in the context of the drug industry's never-ending search for biologically active compounds. Not only that, it may throw new light on how stereoselective chemical reactions operate in biological systems, where one normally finds only one chiral form of any given compound. "The world in which we live is monochiral," says Trapp. "Researchers have not yet found a convincing explanation for this. But it is conceivable that the functional principle of supermolecular interaction which we have exploited was also crucial for the origin of life."

###

Media Contact

Luise Dirscherl
[email protected]
0049-892-180-3423

http://www.uni-muenchen.de

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

New polyion complex for CAR T-cell therapy.

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

September 30, 2023
Irritible Bowel Syndrome

New study will examine irritable bowel syndrome as long COVID symptom

September 29, 2023

True progression or pseudoprogression in glioblastoma patients?

September 29, 2023

Neural activity associated with motor commands changes depending on context

September 29, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Hairy polymer balls help get genetic blueprints inside T-cells for blood cancer therapy

New study will examine irritable bowel syndrome as long COVID symptom

True progression or pseudoprogression in glioblastoma patients?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In