• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Stem cell-derived organoids mimic human parathyroid tissue

Bioengineer by Bioengineer
October 27, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Patient-derived parathyroid organoids (PTOs) could pave the way for future physiology studies and drug-screening applications, as shown in a study published on October 27 in the journal Stem Cell Reports.

Immunofluorescence characterization of parathyroid organoids

Credit: Stem Cell Reports/Noltes et al.

Patient-derived parathyroid organoids (PTOs) could pave the way for future physiology studies and drug-screening applications, as shown in a study published on October 27 in the journal Stem Cell Reports.

“We are the first group in the world that was able to isolate parathyroid stem cells and maintain these cells in our lab as organoids for an extended period of time,” says co-senior study author Schelto Kruijff of the University Medical Center Groningen. “Our research introduces the PTO as a new model for research on parathyroid diseases.”

Parathyroid diseases are characterized by alterations in the excretion of parathyroid hormone, leading to abnormal blood calcium concentrations. The development of parathyroid-targeted treatments and imaging tracers could benefit from in vitro models. Organoids are 3D structures that closely recapitulate tissue architecture and cellular composition and are developed from stem cells. These models have proven very useful for studying tumor behavior and assessing drug responses and have provided a platform for long-term in vitro experimentation.

“We have shown that the parathyroid gland contains stem cells that are able to produce organoids. These organoids mimic the patient condition, are able to produce hormone, express specific markers, and show comparable reactions to drugs,” says Kruijff.

In this study, Kruijff and co-senior study author Rob Coppes of the University Medical Center Groningen set out to establish a patient-derived PTO model representing human parathyroid tissue. The researchers obtained human benign hyperplastic parathyroid tissue from patients undergoing parathyroid surgery. They isolated parathyroid stem cells from the tissue and examined their potential to expand and form PTOs.

The PTOs resembled the original tissue on both gene and protein expression levels and functionality. Additional results demonstrated increased and decreased hormone secretion in response to changes in calcium concentration and parathyroid hormone-lowering drugs. Moreover, the researchers found specific parathyroid-targeted tracer uptake in the PTOs. Taken together, the results demonstrate that these organoids could model human parathyroid functionality.

One study limitation was the absence of the original microenvironment, including blood vessels and fluctuating concentrations of extracellular signals. Nonetheless, the functional testing and tracer experiment showed that the PTOs are a highly suitable model that resembles functional parathyroid tissue.

In future studies, the researchers are planning to transplant these organoids in rats with hypoparathyroidism to study their function in a living animal model. “These organoids can be used to test future parathyroid-targeted drugs and imaging tracers. When using organoids, less animal testing needs to be performed,” Kruijff says. “Also, this technique could be used to try to culture healthy parathyroid gland organoids in order to treat patients with hypoparathyroidism.”

###

This work was supported in part by the UMCG Cancer Research Fund.

Stem Cell Reports, Noltes et al. “Patient-derived parathyroid organoids as tracer and drug-screening application model” https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(22)00464-7

Stem Cell Reports, published by Cell Press for the International Society for Stem Cell Research (@ISSCR), is a monthly open access forum communicating basic discoveries in stem cell research, in addition to translational and clinical studies. The journal focuses on shorter, single-point manuscripts that report original research with conceptual or practical advances that are of broad interest to stem cell biologists and clinicians. Visit http://www.cell.com/stem-cell-reports. To receive Cell Press media alerts, please contact [email protected].



Journal

Stem Cell Reports

DOI

10.1016/j.stemcr.2022.09.015

Method of Research

Experimental study

Subject of Research

People

Article Title

Patient-derived parathyroid organoids as tracer and drug-screening application model

Article Publication Date

27-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

A clump of sea campions next to some thrift or sea pinks.

Ancestral variation guides future environmental adaptations

January 27, 2023
Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

People with arthritis 20% less likely to be in work

A fairy-like robot flies by the power of wind and light

UK’s Overseas Territories at ongoing risk from wide range of invasive species

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In