• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Stanford study finds whales use stealth to feed on fish

Bioengineer by Bioengineer
December 23, 2019
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Cascadia Research Collective; NMFS Permit 16111

Small fish are speedy and easy to scare. So how is it that a giant humpback whale, attacking at speeds about as fast as a person jogs, is able to eat enough fish to sustain itself? Combining field studies, laboratory experiments and mathematical modeling, researchers at Stanford University have found a surprising answer to this seemingly paradoxical feat: Whales capture fish using stealth and deception.

From a conservation and ecological standpoint, this work also derived the first quantitative estimates of how many fish humpbacks consume in a single feeding event and over time.

“Lunge-feeding whales need dense concentrations of prey to forage effectively, yet fish schools could easily disperse and render lunge-feeding ineffective if they sensed a threat,” said David Cade, lead author of the paper about this work, published Dec. 23 in Proceedings of the National Academy of Sciences. “We were interested in finding why these schools of fish did not run from this huge, looming predator.”

The researchers conducted lab experiments to measure anchovies’ escape reaction to a virtual whale – a widening dot, representing the expanding maw of a lunging whale. Models that informed how quickly the dot widened were based off recordings from whale-mounted video tags that the researchers deployed in Monterey Bay and Southern California. They then used results from these experiments to predict how many fish would escape from an oncoming whale based on their reaction times.

“One of the innovations of this study was to use predator data to inform the models we played back to fish,” said Cade, who was a graduate student in the lab of Jeremy Goldbogen, assistant professor of biology at Stanford, during this research. “This allowed us to discover that the range of values at which a fish responds to an oncoming predator are all passed nearly simultaneously at a point when the whale opens its mouth, suggesting that by precisely timing its engulfment, the whale can avoid triggering escape responses in fish.”

Through these experiments, models and field observations, the researchers determined that whales overcome shortcomings in speed and maneuverability by waiting to open their mouths until they are very close to the fish – essentially a whales’ way of sneaking up on their prey. The researchers did not see the same delays in whales pursuing krill, which are less reactive to looming predators.

“This made sense when we realized that fish have been evolving to avoid being eaten by smaller predators for at least 100 million years, but lunge-feeding is a relatively new feeding strategy, evolutionarily speaking,” said Cade.

Humpbacks, like other members of the rorqual whale group, engage in lunge-feeding. This means they lunge after prey, take in a volume of water that can be larger than their own body (thanks to expandable oral cavities) and then filter out the excess water before gulping down their catch. Opening the mouth, then, is hydrodynamically costly – like opening a parachute at high speeds, and feeding on fish requires the whales to time their lunging in ways that can be energetically costly. However, these costs are outweighed by the high energetic gains from captured prey: This research estimates that, for humpbacks, stealthy fish feeding is seven times more energetically efficient per lunge than feeding on krill.

###

Nicholas Carey, a postdoctoral researcher at Stanford, is also a co-author of this work. Additional co-authors are from the National Research Council (Italy) and St. Louis University. Cade is now a postdoctoral researcher at the University of California, Santa Cruz. Goldbogen is also member of Stanford Bio-X and senior author of this study.

This work was funded by the National Science Foundation, the Office of Naval Research and Stanford University’s Terman and Bass Fellowships.

Media Contact
Taylor Kubota
[email protected]
650-724-7707

Related Journal Article

http://dx.doi.org/10.1073/pnas.1911099116

Tags: BiologyBiomechanics/BiophysicsMarine/Freshwater BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

How Plastics Bond with Metals at the Atomic Level

How Plastics Bond with Metals at the Atomic Level

November 10, 2025
Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

Increasing Nitrogen and Rainfall May Dramatically Boost Greenhouse Gas Emissions from the World’s Largest Grasslands

November 7, 2025

OSU Develops Revolutionary New Material Advancing Medical Imaging Technology

November 7, 2025

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1304 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Boosts Breast Lesion Detection

Mount Sinai’s Dr. Jean-Frédéric Colombel to Present 31st Anatomy Lesson in Amsterdam, Showcasing Global Advances in Crohn’s Disease Prevention and Cure

New JNCCN Data Suggests Human Approach Outperforms Technology in Supportive Cancer Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.