• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Special issue: Organoids open frontiers in biomedicine, as design challenges are addressed

Bioengineer by Bioengineer
June 6, 2019
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A Special Issue of Science featuring four Reviews illuminates ways in which organoid technology is opening up frontiers of research in biomedicine, allowing for the testing of cancer drugs on cells from individual patients, for example. As the technology expands, researchers are working to solve unmet needs, including related to production, control, and analysis of organoids and their microenvironments.

In one Review, Hans Clevers and David Tuveson talk about a decade of efforts to use organoids to study cancer. “This allows for the first time,” Clevers says in a related video, “the researcher to take small samples of tumors from many, many patients, grow them in the lab, build them into … a living biobank.” The biobank can be used for research, in lieu of using animals. Using cancer organoids developed in this way permits testing samples of individual drugs on individual cancer patients, or engineering of cancer mutations into the organoid to understand their individual contributions to disease. In the video, Clevers discusses how immune cells are recently considered particularly important to cancer drug development. “Organoids now for the first time offer the possibility to take cancer cells [and] immune cells from the patient, bring them together in a tumor organoid and study how to how to encourage the immune cells to go and kill the cancer cells,” Clevers says.

In another Review in the issue, Sunghee Estelle Park, Andrei Georgescu, and Dongeun Huh colleagues discuss how integrating organoids with organ-on-a-chip technology will make it more likely that organoids can be harnessed for biomedical applications – including to test scenarios that aren’t testable in humans. Though organoids allow for more accurately modeling the human body than organ-on-a-chip technology, organoids can develop in a highly variable way, making them challenging to control. “We can use [organ-on-chip devices] to control the cells in their microenvironment very precisely,” says Huh in a related video. “What’s compelling is to combine the physiological realism of organoids with the [control] and reproducibility of organ-on-a-chip technology to develop a more advanced system that would give us the best of both worlds,” Huh says. In the video, he describes recently launching some of his institution’s organ-on-a-chip technology on the International Space Station to study how and why astronauts become more prone to infection during spaceflight.

A third Review in the issue, by Takanori Takebe and James M. Wells, highlights a current challenge in organoid design – engineering cellular complexity into organoids in a controlled manner. The next generation of organoids will require an engineering-based narrative design to control patterning, assembly, morphogenesis, growth, and function, the authors say. A fourth Review, by Marti Shahbazi, Eric D. Siggia, Magdalena Zernicka-Goetz, discusses how creating stem cell-derived organoid-like embryo structures could overcome challenges in studying embryonic development.

###

Media Contact
Science Press Package Team
[email protected]
http://dx.doi.org/10.1126/science.aax0164

Tags: cancerMedicine/Health
Share13Tweet8Share2ShareShareShare2

Related Posts

New CEA-Based Surveillance Boosts Gastric Cancer

August 28, 2025

MERIT Grant Secured to Advance HIV Cure Research

August 28, 2025

New Study Reveals Key Mechanisms Behind Cancer Cell Response and Resistance to Treatment

August 28, 2025

Immune Cell Therapy Shows Promise in Stabilizing Advanced Head and Neck Cancer

August 28, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Maximizing Liver Graft Use from Circulatory Death Donors

Exploring Cellular Diversity Throughout Fruit Fly Metamorphosis

Bison Restoration: Revitalizing the Yellowstone Ecosystem Through Freedom to Roam

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.