• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, May 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Space-based lidar shines new light on plankton

Bioengineer by Bioengineer
December 19, 2016
in Science News
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Image by Tim Marvel, NASA

CORVALLIS, Ore. — A space-based sensor that can "see" through fog, clouds and darkness has given scientists their first continuous look at the boom-bust cycles that drive polar plankton communities.

The decade-long set of images reveals that phytoplankton cycles are more tied to the push-pull relationship between them and their predators than was initially thought, according to a study published today in the journal Nature Geoscience.

Phytoplankton are the foundation of the ocean's food web. Commercial fisheries, marine mammals and birds all depend on the blooms, said the study's lead author, Michael Behrenfeld, an expert in marine plankton at Oregon State University's College of Agricultural Sciences.

"It's really important for us to understand what controls these boom-bust cycles and how they might change in the future," Behrenfeld said, "because the dynamics of plankton communities have implications for all the other organisms throughout the web."

Phytoplankton also influence Earth's carbon cycle. Through photosynthesis, they absorb a great deal of the carbon dioxide near the ocean's surface. That, in turn, allows carbon dioxide from the atmosphere to go into the ocean.

The satellite-mounted LIDAR instrument, dubbed Cloud-Aerosol Lidar with Orthogonal Polarization, or CALIOP, uses a laser beam to map the ocean's surface and immediate subsurface. CALIOP monitored plankton in the Arctic and Antarctic ocean waters from 2006 to 2015.

CALIOP'S measurements reveal that, as the phytoplankton growth accelerates, the blooms are able to outpace the organisms that prey on them. As soon as that acceleration stops, however, the predatory organisms catch up and the bloom ends.

Imagine two rubber balls–one red, one green–connected by a rubber band, Behrenfeld said.

"Take the green ball–which represents the phytoplankton–and whack it with a paddle," he said. "As long as that green ball accelerates, the rubber band will stretch, and the red ball–which represents all the things that eat or kill the phytoplankton–won't catch up with the green ball. But as soon as the green ball stops accelerating, the tension in the rubber band will pull that red ball up to it, and the red ball catches up."

This finding, he said, goes against the commonly held belief that blooms begin when phytoplankton growth rates reach a threshold rate, and then stop when growth rates crash.

Instead, blooms start when growth rates are extremely slow, and then stop when phytoplankton growth is at its maximum but the acceleration of the bloom has hit its peak. It's only then that the predatory organisms catch up and the bloom terminates.

The study also reveals that, in Arctic waters, the year-to-year changes in this constant push and pull between predator and prey has been the primary driver of change over the past 10 years. The situation is different in the southern ocean around Antarctica, where changes in the ice cover held more sway.

"The take-home message," Behrenfeld said, "is that, if we want to understand the production of the polar systems as a whole, we have to focus both on changes in ice cover and changes in the ecosystems that regulate this delicate balance between predators and prey."

The capabilities of space-based LIDAR, he said, open the door to even more-detailed measurements of plankton communities. For example, the CALIOP instrument, good as it is, was engineered to take measurements of the atmosphere and does not have the resolution necessary to capture detailed information below the ocean's surface.

A higher-resolution instrument, now being developed at NASA but not yet deployed on a satellite, could collect subsurface samples at finely spaced depths as the laser pulse penetrates through the water column, allowing scientists to see the vertical structure of plankton blooms. That would reveal more about how plankton are being influenced by the ocean's currents and its other physical properties, Behrenfeld said.

The instrument could also determine what fraction of the signal is from the scattering of light versus the absorption of light.

"We can use the scattering information to quantify the concentration of the plankton, and we can use the absorption to say something about the plankton's physiology–in other words, the health of the cells," said Behrenfeld.

The CALIOP sensor is mounted on the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), jointly owned by NASA and France's space agency. Other participating institutions include the University of Maine, the University of California and Princeton University.

###

Media Contact

Michael Behrenfeld
[email protected]
541-737-5289
@oregonstatenews

http://www.orst.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

May 17, 2025
blank

Obesity Drugs Aid Weight Loss After Bariatric Surgery

May 17, 2025

METTL13 Controls MYC, Drives Leukemia Cell Survival

May 17, 2025

Low-Dose Radiotherapy Combo Shows Promise in Head and Neck Cancer

May 17, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    89 shares
    Share 36 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    78 shares
    Share 31 Tweet 20
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Matrix Metalloproteinase-10 Drives Kidney Fibrosis via β-Catenin

Obesity Drugs Aid Weight Loss After Bariatric Surgery

METTL13 Controls MYC, Drives Leukemia Cell Survival

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.