• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, January 8, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sound changes the way rodents sense touch

Bioengineer by Bioengineer
December 28, 2018
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Shoji Komai

Our eyes, ears and skin are responsible for different senses. Moreover, our brain assigns these senses to different regions: the visual cortex, auditory cortex and somatosensory cortex. However, it is clear that there are anatomical connections between these different cortices such that brain activation to one sense can influence brain activation to another. A new study by the laboratory of Associate Professor Shoji Komai at the Nara Institute of Science and Technology (NAIST), Japan, seen in PLOS ONE, explains how auditory stimulation of the barrel cortex influences responses to tactile stimulation in mice and rats.

The barrel cortex is one of the most highly studied primary somatosensory systems in animals, that is, systems in our brain sensitive to touch, pain, and temperature. It may not immediately be obvious why studying the barrel cortex, which maps sensation to whiskers, is relevant to humans, but it turns out the texture discrimination performed by the whiskers in rodents is quite similar to the same discrimination we do using our finger tips. Therefore, Komai considered the barrel cortex a good model to see how sound can affect the perception of touch.

“We think our senses are distinct, but there are many studies that show multisensory responses, mainly through audio-visual interactions or audio-tactile interactions,” explains Komai.

Using patch clamp experiments of single neurons, his group found that mouse and rat neurons in the barrel cortex were unresponsive to light, but that a strong majority responded to sound. These neurons showed electrical responses to sound that could be categorized as regular spiking or fast spiking. Further, the barrel cortex appeared to treat tactile and auditory stimuli separately.

“These responses indicate that tactile and auditory information is processed in parallel in the barrel cortex,” says Komai.

Additional analysis showed that the electrophysiological properties of the responses were different, with sound causing longer postsynaptic potentials with long latency, almost priming the animal to sense touch. This would be like the shuddering one does when hearing a loud boom. According to Komai, this reaction would be an evolutionary advantage for nocturnal animals such as rats and mice.

“In a nocturnal environment, sound may act as an alarm to detect prey or predators. The combination of auditory and tactile cues may yield an effective response. It will be interesting to learn how the same system is advantageous in humans,” he says.

###

Resource

Title: Auditory-induced response in the primary sensory cortex of rodents

Authors: Atsuko T. Maruyama & Shoji Komai

Journal: PLOS ONE, 13, e0209266

DOI: 10.1371/journal.pone.0209266

Media Contact
Takahito Shikano
[email protected]
81-743-725-644

Related Journal Article

http://dx.doi.org/10.1371/journal.pone.0209266

Tags: BiologyCell BiologyEvolutionPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Genome of Alpine Streptomyces Reveals Bioactive Compounds

Genome of Alpine Streptomyces Reveals Bioactive Compounds

January 8, 2026
Unique Adaptive Strategies in Southeast and East Asia

Unique Adaptive Strategies in Southeast and East Asia

January 8, 2026

Trade-off in Egg Recognition Affects Fungal Acceptance

January 8, 2026

Elytral Chemistry Disrupts, But Doesn’t Halt Ladybird Mating

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    153 shares
    Share 61 Tweet 38
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    143 shares
    Share 57 Tweet 36
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    46 shares
    Share 18 Tweet 12
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Genome of Alpine Streptomyces Reveals Bioactive Compounds

AI Revolutionizes Traditional Motifs in Design Integration

Unraveling Human Lipid Transfer Mechanisms

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.