• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, May 21, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Some bats develop resistance to devastating fungal disease

Bioengineer by Bioengineer
December 6, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: J. R. Hoyt

Bat populations in some places in North America appear to have developed resistance to the deadly fungal disease known as white-nose syndrome. Researchers from UC Santa Cruz analyzed infection data and population trends of the little brown bat in the eastern United States and found that populations in New York that had stabilized after initial declines had much lower infection levels at the end of winter than populations that were still declining.

The little brown bat was previously one of the most abundant bat species in the eastern United States, but was reduced to less than 10 percent of its former population with the arrival of white-nose syndrome. The fungus was introduced to New York State in 2006, and it continues to spread in the United States and Canada, causing declines of 90 percent or more in several species.

UC Santa Cruz researchers led by biologists Marm Kilpatrick and Winifred Frick have been at the forefront of research on the disease, conducting field surveys to help track its spread and studying the dynamics of disease transmission and the impacts on bat populations.

In the new study, researchers sampled hibernating bats at nine sites in New York, Illinois, and Virginia, using a standardized sampling technique to detect and quantify the amount of fungus on each bat. They then used mathematical modeling techniques to examine differences in disease dynamics between persisting and declining populations. Their findings were published December 5 in the journal Philosophical Transactions of the Royal Society: Biological Sciences.

"Populations of little brown bats have declined dramatically across their range. There have been several reports that populations in New York, where the disease was first introduced, are no longer declining, but no one understood why," said first author Kate Langwig, who worked on the study as a graduate student at UC Santa Cruz and is now at Harvard University. "This study is the first to indicate that little brown bats appear to have evolved resistance to the disease."

The researchers considered several possible hypotheses for the ability of some bats to persist with the fungus: host resistance, host tolerance, and lower transmission. Their results pointed toward host resistance causing lower growth rates of the fungus during late winter. The results did not support the other hypotheses, Langwig said.

The mechanism underlying the resistance of little brown bats remains unknown. "It could be changes in arousal behavior, differences in skin microbes, or an activation of the immune response by bats after infection has reached a moderate level. Future studies are needed to uncover these details," Langwig said.

The authors emphasized that they have only examined populations of a single bat species. "For other species, like the northern long-eared bat, we don't have evidence to suggest populations are persisting inside hibernacula," Langwig said. "While this study is good news for some colonies of little brown bats, other species show little sign of being able to persist with the disease."

###

In addition to Langwig, the coauthors of the paper include Winifred Frick and Marm Kilpatrick, both faculty members in the Department of Ecology and Evolutionary Biology at UC Santa Cruz; Joseph Hoyt, a graduate student at UC Santa Cruz; and Katy Parise and Jeffrey Foster at the University of New Hampshire. This work was supported by the National Science Foundation, the Woodtiger Fund, and Bat Conservation International.

Media Contact

Tim Stephens
[email protected]
831-459-4352
@ucsc

http://www.ucsc.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Graphyne

Long-hypothesized ‘next generation wonder material’ created for first time

May 21, 2022
Flower strips next to a conventional wheat field

Organic farming or flower strips – which is better for bees?

May 21, 2022

Haptics device creates realistic virtual textures

May 20, 2022

Researchers unveil a secret of stronger metals

May 20, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Violence/CriminalsUniversity of WashingtonVaccineVehiclesWeather/StormsWeaponryVirusUrbanizationVaccinesUrogenital SystemVirologyZoology/Veterinary Science

Recent Posts

  • Long-hypothesized ‘next generation wonder material’ created for first time
  • Organic farming or flower strips – which is better for bees?
  • Haptics device creates realistic virtual textures
  • Researchers unveil a secret of stronger metals
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....