• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Solvent additive-free ternary polymer solar cells with 16.27% efficiency

Bioengineer by Bioengineer
May 14, 2019
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

It has become a hot topic to further improve the efficiency of polymer solar cells (PSCs) from device physics. Ternary strategy provides a very potential solution for simultaneous optimization of materials selection and device fabrication process. Since 2013, Prof. Fujun Zhang’s group focused on the research of ternary PSCs. Zhang’s group has carried out a series of researches on ternary system, such as polymer/small molecule, polymer/polymer, small molecule/small molecule, double donor, double acceptor, etc. The preparation technology of “two-step method” and “inverted method” were reported successively, and some new methods were designed for studying the exciton and carrier dynamics in ternary PSCs. The compatibility of materials is a key factor to affect the phase separation of active layer, intermolecular interactions, device performance and working mechanism. The working mechanisms of ternary PSCs are still under investigation. For example, the “alloy model” may be a macroscopic phenomenon caused by the degeneracy of the excited state energy level between materials, and its microscopic nature is not changed.

Recently, ternary PSCs with 16.27% efficiency were reported by Fujun Zhang’s group, which has been published on the Science Bulletin in the form of Short Communication.

PM6:Y6 and PM6:IT-4F two binary PSCs exhibit complementary short circuit current density (Jsc, 25.08 mA cm-2 vs. 19.75 mA cm-2), open circuit voltage (Voc, 0.836 V vs. 0.860 V) and fill factor (FF, 73.2% vs. 75.1%). The three photovoltaic parameters of PM6:Y6:T-4F ternary PSCs can be optimized by adjusting the content of IT-4F in acceptors. When the content of IT-4F is 20 wt%, the ternary PSCs achieve optimized efficiency of 16.27% with a Jsc of 25.40 mA cm-2, a Voc of 0.844 V and a FF of 75.9%. In this work, the up-side-down solvent vapor treatment was employed to optimize the phase separation of active layers, which was firstly proposed by Zhang’s group.

Simple preparation process and high repeatability are the inevitable requirements for the industrialization of PSCs. The ternary PSCs without solvent additive show great potential in the industrialization of organic photovoltaic. In addition to enhancing the photon harvesting of active layer, the third component can also optimize photogenerated excitons bulk distribution to improve the performance of PSCs. This work further proves that the ternary strategy have the potential to become the first choice for the industrialization of PSCs.

###

This work was supported by the Fundamental Research Funds for the Central Universities (2018JBM061), National Natural Science Foundation of China (61805009, 61675017). Beijing Natural Science Foundation (4192049).

Qiaoshi An, Xiaoling Ma, Jinhua Gao, Fujun Zhang. Solvent additive-free ternary polymer solar cells with 16.27% efficiency. Science Bulletin, 2019, 64(8)504-506, doi: 10.1016/j.scib.2019.03.024
https://www.sciencedirect.com/science/article/pii/S2095927319301768

Media Contact
Fujun Zhang
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.scib.2019.03.024

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

Dual Dynamic Helical Poly(disulfide)s: Adaptive, Recyclable Polymers

October 1, 2025
Atom-photon entanglement breakthrough opens new horizons for future quantum networks

Atom-photon entanglement breakthrough opens new horizons for future quantum networks

September 30, 2025

Charting the Cosmos Made Simpler

September 30, 2025

Scientists Discover Room-Temperature Method to Enhance Light-Harvesting and Emission Devices

September 30, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    62 shares
    Share 25 Tweet 16
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    57 shares
    Share 23 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Percentile Scores for Revised Penn Smell Test

Multiservice Irrigation for a Sustainable Agroecological Future

Testicular Cancer Trends and Outcomes in Latvia

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.