• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Smelling with your tongue

Bioengineer by Bioengineer
April 24, 2019
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Identification of functional olfactory receptors in human taste cells opens doors to new approaches to modify food flavor

IMAGE

Credit: Monell Center

PHILADELPHIA (April 24, 2019) – Scientists from the Monell Center report that functional olfactory receptors, the sensors that detect odors in the nose, are also present in human taste cells found on the tongue. The findings suggest that interactions between the senses of smell and taste, the primary components of food flavor, may begin on the tongue and not in the brain, as previously thought.

“Our research may help explain how odor molecules modulate taste perception,” said study senior author Mehmet Hakan Ozdener, MD, PhD, MPH, a cell biologist at Monell. “This may lead to the development of odor-based taste modifiers that can help combat the excess salt, sugar, and fat intake associated with diet-related diseases such as obesity and diabetes.”

While many people equate flavor with taste, the distinctive flavor of most foods and drinks comes more from smell than it does from taste. Taste, which detects sweet, salty, sour, bitter, and umami (savory) molecules on the tongue, evolved as a gatekeeper to evaluate the nutrient value and potential toxicity of what we put in our mouths. Smell provides detailed information about the quality of food flavor, for example, is that banana, licorice, or cherry? The brain combines input from taste, smell, and other senses to create the multi-modal sensation of flavor.

Until now, taste and smell were considered to be independent sensory systems that did not interact until their respective information reached the brain. Ozdener was prompted to challenge this belief when his 12-year-old son asked him if snakes extend their tongues so they can smell.

In the study, published online ahead of print in Chemical Senses, Ozdener and colleagues used methods developed at Monell to maintain living human taste cells in culture. Using genetic and biochemical methods to probe the taste cell cultures, the researchers found that the human taste cells contain many key molecules known to be present in olfactory receptors.

They next used a method known as calcium imaging to show that the cultured taste cells respond to odor molecules in a manner similar to olfactory receptor cells.

Together, the findings provide the first demonstration of functional olfactory receptors in human taste cells, suggesting that olfactory receptors may play a role in the taste system by interacting with taste receptor cells on the tongue. Supporting this possibility, other experiments by the Monell scientists demonstrated that a single taste cell can contain both taste and olfactory receptors.

“The presence of olfactory receptors and taste receptors in the same cell will provide us with exciting opportunities to study interactions between odor and taste stimuli on the tongue,” said Ozdener.

In addition to providing insight into the nature and mechanisms of smell and taste interactions, the findings also may provide a tool to increase understanding of how the olfactory system detects odors. Scientists still do not know what molecules activate the vast majority of the 400 different types of functional human olfactory receptors. Because the cultured taste cells respond to odors, they potentially could be used as screening assays to help identify which molecules bind to specific human olfactory receptors.

Moving forward, the scientists will seek to determine whether olfactory receptors are preferentially located on a specific taste cell type, for example, sweet- or salt-detecting cells. Other studies will explore how odor molecules modify taste cell responses and, ultimately, human taste perception.

###

Also contributing to the research were lead author Bilal Makik, Nadia Elkaddi, and Jumanah Turkistani, all from Monell, and Andrew Spielman, from the New York University School of Medicine. The research was funded by institutional funds from the Monell Center and grant P30DC011735 from the National Institute on Deafness and Other Communication Disorders of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The Monell Chemical Senses Center is an independent nonprofit basic research institute based in Philadelphia, Pennsylvania. Founded in 1968, Monell science improves human health and well-being through the understanding of taste, smell, and the related senses. Using an interdisciplinary approach, scientists collaborate in the programmatic areas of sensation and perception; neuroscience and molecular biology; environmental and occupational health; nutrition and appetite; health and well-being; development, aging and regeneration; and chemical ecology and communication. For more information about Monell, visit http://www.monell.org.

Media Contact
Leslie Stein
[email protected]

Tags: BiologyCell BiologyMolecular BiologyNutrition/NutrientsOlfactory/TastePhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

September 23, 2025

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

September 23, 2025

Jie Xiao Honored with 2026 Carolyn Cohen Innovation Award

September 23, 2025

Wonhwa Cho Honored with Biophysical Society’s 2026 Award for Contributions to Biophysics in Health and Disease

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Microtia Treatment: Advances in Tissue Engineering

Cornelis (Cees) Dekker Honored with 2026 Kazuhiko Kinosita Award in Single-Molecule Biophysics

Nuria Assa-Munt Honored with 2026 Rosalba Kampman Distinguished Service Award

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.