• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, January 21, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Smartwatch tracks medication levels to personalize treatments

Bioengineer by Bioengineer
August 7, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Advance could help doctors choose the right drug at the right dose for the right person

IMAGE

Credit: Jialun Zhu, Shuyu Lin, and Yichao Zhao (I²BL/UCLA)

Engineers at the UCLA Samueli School of Engineering and their colleagues at Stanford School of Medicine have demonstrated that drug levels inside the body can be tracked in real time using a custom smartwatch that analyzes the chemicals found in sweat. This wearable technology could be incorporated into a more personalized approach to medicine — where an ideal drug and dosages can be tailored to an individual.

A study detailing the research was published in Proceedings of the National Academy of Sciences.

In general, medications are prescribed with a ‘one-size-fits-all’ approach — drugs are designed and prescribed based on statistical averages of their effectiveness. There are guidelines for factors such as patients’ weight and age. But in addition to these basic differentiators, our body chemistry constantly changes — depending on what we eat and how much we’ve exercised. And on top of these dynamic factors, every individual’s genetic makeup is unique and hence responses to medications can vary. This affects how fast drugs are absorbed, take effect and get eliminated from an individual.

According to the researchers, current efforts to personalize the drug dosage rely heavily on repeated blood draws at the hospital. The samples are then sent out to be analyzed in central labs. These solutions are inconvenient, time-consuming, invasive and expensive. That is why they are only performed on a small subset of patients and on rare occasions.

“We wanted to create a wearable technology that can track the profile of medication inside the body continuously and non-invasively,” said study leader Sam Emaminejad, an assistant professor of electrical and computer engineering at UCLA. “This way, we can tailor the optimal dosage and timing of the intake for each individual. And using this personalization approach, we can improve the efficacy of the therapeutic treatments.”

Because of their small molecular sizes, many different kinds of drugs end up in sweat, where their concentrations closely reflect the drugs’ circulating levels. That’s why the researchers created a smartwatch, equipped with a sensor that analyzes the sampled tiny droplets of sweat.

The team’s experiment tracked the effect of acetaminophen, a common over-the-counter pain medication, on individuals over the period of a few hours. First, the researchers stimulated sweat glands on the wrist by applying a small electric current, the same technique that Emaminejad’s research group demonstrated in previous wearable technologies.

This allowed the researchers to detect changes in body chemistry, without needing subjects to work up a sweat by exercising. As different drugs each have their own unique electrochemical signature, the sensor can be designed to look for the level of a particular medication at any given time.

“This technology is a game-changer and a significant step forward for realizing personalized medicine,” said study co-author Ronald W. Davis, a professor of biochemistry and genetics at Stanford Medical School. “Emerging pharmacogenomic solutions, which allow us to select drugs based on the genetic makeup of individuals, have already shown to be useful in improving the efficacy of treatments. So, in combination with our wearable solution, which helps us to optimize the drug dosages for each individual, we can now truly personalize our approaches to pharmacotherapy.”

What makes this study significant is the ability to accurately detect a drug’s unique electrochemical signal, against the backdrop of signals from many other molecules that may be circulating in the body and in higher concentrations than the drug, said the study’s lead author Shuyu Lin, a UCLA doctoral student and member of Emaminejad’s Interconnected and Integrated Bioelectronics Lab (I²BL). Emaminejad added that the technology could be adapted to monitor medication adherence and drug abuse.

“This could be particularly important for individuals with mental health issues, where doctors prescribe them prolonged pharmacotherapy treatments,” he said. ” The patients could benefit from such easy-to-use, noninvasive monitoring tools, while doctors could see how the medication is doing in the patient.”

###

Dr. Carlos Milla, a professor of pediatrics at the Lucile Salter Packard Children’s Hospital is a senior author on the paper.

The other UCLA authors are postdoctoral scholar Bo Wang; graduate students Wenzhuo Yu, Yichao Zhao, Ke En, Jialun Zhu, Xuanbing Cheng, Haisong Lin, Zhaoqing Wang, Hannaneh Hojaiji and Christopher Yeung; and undergraduate student Crystal Zhou. All are members of Emaminejad’s research laboratory.

The research was supported in part by the National Science Foundation, the PhRMA Foundation, the Brain and Behavior Foundation, and the Henry Jackson Foundation.

Media Contact
Christine Wei-li Lee
[email protected]

Original Source

https://samueli.ucla.edu/smartwatch-tracks-medication-levels-to-personalize-treatments/

Related Journal Article

http://dx.doi.org/10.1073/pnas.2009979117

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyDiagnosticsElectrical Engineering/ElectronicsHealth Care Systems/ServicesMedicine/HealthPharmaceutical ChemistryPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Older Adults Excel in Creative Problem Solving

January 20, 2026

Piezo1 Channel Drives Bladder Inflammation and Fibrosis

January 20, 2026

Improving Laboratory Quality in Rwanda: Insights and Perspectives

January 20, 2026

Reducing Environmental Impact: Carbon Pricing and VAT Reform

January 20, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    155 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    148 shares
    Share 59 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    79 shares
    Share 32 Tweet 20
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    55 shares
    Share 22 Tweet 14

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Older Adults Excel in Creative Problem Solving

Piezo1 Channel Drives Bladder Inflammation and Fibrosis

Improving Laboratory Quality in Rwanda: Insights and Perspectives

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.