• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Smart fluorescent dyes

Bioengineer by Bioengineer
August 16, 2018
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Controlling the excited electronic states in luminescent systems remains a challenge in the development of fluorescent and phosphorescent dyes. Now, scientists in Japan have developed a unique organic fluorophore that changes its emission color without loss of efficiency when externally stimulated. The study published in the journal Angewandte Chemie explains this behavior by a simple phase transformation of the solid substance, which could be relevant for optoelectronic applications such as in smart OLEDs.

Although luminescence is an extensively studied phenomenon and its theoretical basis is well understood, the development of new pigments and dyes with outstanding functionality is not straightforward. Phase transitions of a solid material may quench the fluorescence, and pigments in OLED applications are prone to aging. Now, the research group of Takuma Yasuda at Kyushu University, Fukuoka, Japan, has synthesized a green emitting pigment that responds to external stimuli by a remarkable color change into orange emission, and that without no observed loss in luminescence efficiency. This two-color behavior of one pigment might by highly useful for the development of smart optoelectronic and sensor systems.

To obtain efficient luminescent systems, scientists are increasingly focusing on the excited states and the electronic transitions: The more distinct and defined the electronic transitions are, the more efficient is the light emission when the substance is excited by light of other wavelengths or electric energy. On the other hand, disturbances of the molecular structure can trigger nonradiative relaxation, and then, most fluorescence is lost. Here, Yasuda and his group found that their synthesized fluorophore, which has an elongated and relatively simple symmetric structure incorporating well-known chromophores, can switch its emission colors between orange and green when changing solid-state morphologies.

The authors substantiated their findings with X-ray crystallographic analyses and theoretical calculations. They found that the amorphous phase holds a slightly relaxed excited state compared to the crystalline one. This was explained by a twist in the molecule, which occurred at a different angle when the crystal structure was broken. Accordingly, the light emitted from that amorphous-phase excited state was at a longer wavelength than that emitted from the excited crystalline state.

Such a two-color emission from different solid phases could be useful for sophisticated optoelectronic and sensor applications. The Japanese authors found that the substance emitted orange fluorescence when deposited as a thin film, but this color turned to green when the film was annealed, that is, kept at high temperature and cooled down again. Then they scratched the annealed film and found orange fluorescence exactly at the places of scratching; even writing words in orange fluorescence was possible.

A more demanding application is that in organic light-emitting devices, the OLEDs. Sandwiched in an OLED setup, the compound exhibited bright electroluminescence, either in green when in the crystalline phase or in orange color when in the amorphous phase. This two-color electroluminescence from one pigment might be highly interesting for the ongoing research on stimuli-responsive smart materials.

###

(3441 characters)

About the Author

Dr. Takuma Yasuda is Professor of Organic Materials Chemistry at the Inamori Frontier Research Center at Kyushu University, Fukuoka, Japan. His research group develops functional organic materials with semiconductor, luminescence, and photovoltaic properties.

http://www.inamori-frontier.kyushu-u.ac.jp/optoelectronics/

Media Contact

Mario Mueller
[email protected]

http://newsroom.wiley.com/

http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1521-3773/homepage/press/201826press.html

Related Journal Article

http://dx.doi.org/10.1002/anie.201806863

Share12Tweet8Share2ShareShareShare2

Related Posts

Adolescent Shoulder MRIs: Unraveling Supraspinatus Tendon Mysteries

October 11, 2025

Evaluating Pancreaticobiliary Maljunction in Children via Ultrasound

October 11, 2025

“Revolutionary Pediatric CT Reduces Contrast Without Quality Loss”

October 11, 2025

Genetic Shifts Drive Aggressiveness in 5-FU-Resistant Cells

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1221 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Link Between Gut Microbiota and MASLD Revealed

Link Between Gut Microbiota and MASLD Revealed

Tracking Body and Mind: The Power of Skin Conductance

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.