• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Small but versatile

Bioengineer by Bioengineer
December 10, 2018
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Key players in the marine nitrogen cycle can utilize cyanate and urea

IMAGE

Credit: © K. Kitzinger / Max Planck Institute for Marine Microbiology


The ammonia oxidizing archaea, or Thaumarchaeota, are amongst the most abundant marine microorganisms. Yet, we are still discovering which factors allow them to thrive in the ocean: A new publication reveals that marine Thaumarchaeota have a broader metabolism than previously thought.

The Thaumarchaeota play a key role in the marine nitrogen cycle. They gain energy for growth by converting ammonia, which is the most reduced form of inorganic nitrogen, to a more oxidized form: nitrite. These so-called ammonia oxidizing archaea were discovered little more than a decade ago, yet these organisms make up a large part of the marine microbial community, thriving in the oceans despite ammonium being present only at very low concentrations.

Even though the Thaumarchaeota are such a key part of the marine nitrogen cycle, little is known about the physiology of these small and enigmatic microorganisms. In general, they are considered to be metabolically restricted, relying on ammonia as an energy source. A new study by Katharina Kitzinger and colleagues from the Max Planck Institute for Marine Microbiology in Bremen, Germany, the University of Vienna, Austria, the Georgia Institute for Technology, USA, the Carl von Ossietzky University Oldenburg, Germany, and the University of Bremen, Germany, now reveals that this is not quite true. Rather, the authors show that marine ammonia oxidizing archaea can also utilize organic nitrogen sources. “We show for the first time that both environmental and cultured marine ammonia oxidizing archaea can use cyanate, a simple organic nitrogen compound, as an additional energy source”, Kitzinger explains. Further, they show these microorganisms also use that urea, another organic nitrogen compound.

These findings are important as cyanate and urea are common nitrogen and energy sources in the oceans. The Thaumarchaeota’s ability to supplement their metabolism with these compounds might be one reason for their outstanding success in the oceans.

Kitzinger is especially intrigued by how the marine ammonia oxidizing archaea are able to use cyanate. “We still aren’t sure exactly how they do it. They don’t have the typical enzyme repertoire needed to use cyanate. It will be exciting to see which enzymes allow marine ammonia oxidizing archaea to use cyanate, if these organisms have an even larger metabolic versatility than we know now, and how this versatility shapes their ecology”, says Kitzinger.

###

Media Contact
Katharina Kitzinger
[email protected]
49-421-202-8646

Original Source

https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/small-but-versatile/

Related Journal Article

http://dx.doi.org/10.1038/s41564-018-0316-2

Tags: BiologyMarine/Freshwater BiologyMicrobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Sex Differences in Cocaine Effects on Nucleus Accumbens

Sex Differences in Cocaine Effects on Nucleus Accumbens

November 26, 2025
blank

K-mer GWAS Identifies Lr20 Virulence Gene in Rust

November 26, 2025

Microsatellite Markers Reveal Milkfish Genetic Diversity in India

November 26, 2025

Unraveling Color Variations in Shining Leaf Chafers

November 26, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    100 shares
    Share 40 Tweet 25
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    101 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Sex Differences in Cocaine Effects on Nucleus Accumbens

ESCRT-III: Key Player in Membrane Fission and Repair

Hormone Levels Linked to Inflammation in PCOS

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.