• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech team used mass spectrometry to study composition of meteorites

Bioengineer by Bioengineer
April 5, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Skoltech

Scientists from Russia and Germany studied the molecular composition of carbonaceous chondrites – the insoluble organic matter of the Murchison and Allende meteorites – in an attempt to identify their origin. Ultra-high resolution mass spectrometry revealed a wide diversity of chemical compositions and unexpected similarities between meteorites from different groups. The research was published in the Scientific Reports.

Carbonaceous chondrites contain nearly the entire spectrum of organic molecules encountered on Earth, including nucleic acids which might have played a pivotal role in the origin of life. Since the majority of modern meteorites are of nearly the same age as the Earth, their composition should be similar to that of meteorites that bombarded the Earth’s surface in ancient times. Just like comets, they can be considered a source of organic compounds which most likely formed the core of the Earth’s biosphere.

According to Skoltech Senior Research Scientist Alexander Zherebker, “the geological history of the Earth is a continuous process that involves division and transformation (biological or otherwise) of the Solar System’s primary matter. What remains of that matter ends up on Earth in the form of chondrites. However, two centuries of research on the organic matter of meteorites fall short of a full picture of its molecular composition: for instance, there is no systematic data on insoluble organic matter of meteorites which may account for up to 70% of all organic carbon in the samples. Presumably, these substances have much higher molecular complexity than suggested by research focusing on particular classes of organic compounds.”

Scientists from Skoltech, Moscow State University, Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, and the Rostock Institute (Germany) applied ultra-high resolution mass spectrometry methods to study the composition of meteorites. The Skoltech team included researchers from the Mass Spectrometry Laboratory at the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE): Alexander Zherebker, Yury Kostyukevich, Alexey Kononikhin, and Oleg Kharybin. The research was led by Skoltech Professor Evgeny Nikolaev, Corresponding Member of RAS, Doctor of Physics and Mathematics, Head of the Mass Spectrometry Laboratory.

The team discovered an amazing molecular diversity in the insoluble organic matter of carbonaceous chondrites. “Considering that meteorites and the Earth are of similar age, we can argue that the organic matter of carbonaceous chondrites could have been the source of chemical compounds which served as building blocks for biological molecules and life on Earth. However, meteorite composition has nothing to do with living matter, which is evidenced, for example, by totally different oxidative profiles of extraterrestrial organic matter and a similar fraction of coal of biological origin. That is to say, meteorites showed no signs of “selection” of compounds,” Alexander Zherebker comments.

The analysis of carbonaceous chondrite extracts by isotopic exchange mass spectrometry revealed the presence of sulfur-containing compounds with all possible oxidation states from -2 to +6, which was in no way related to the sample’s thermal history, as previously thought. The relative content of these compounds was the only difference, as confirmed by the Murchison and Allende samples.

The team’s findings suggest that the precursors which created different celestial bodies produced similar organic matter which later transformed in various ways, depending on the environment and its various effects.

###

Skoltech is a private international university located in Russia. Established in 2011 in collaboration with the Massachusetts Institute of Technology (MIT), Skoltech is cultivating a new generation of leaders in the fields of science, technology, and business is conducting research in breakthrough fields and is promoting technological innovation with the goal of solving critical problems that face Russia and the world. Skoltech is focusing on six priority areas: data science and artificial intelligence, life sciences, advanced materials and modern design methods, energy efficiency, photonics, and quantum technologies, and advanced research. Web: https://www.skoltech.ru/.

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/04/skoltech-team-used-mass-spectrometry-to-study-composition-of-meteorites/

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-86576-6

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsMeteorologyMolecular PhysicsOpticsResearch/DevelopmentSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Co-electroreduction of CO and Glyoxal Yields C3 Products

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025
blank

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

November 5, 2025

Biodegradable Cesium Nanosalts Trigger Anti-Tumor Immunity by Inducing Pyroptosis and Modulating Metabolism

November 5, 2025

New Lightning Forecasting Technology Aims to Safeguard Future Aircraft

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Skeletal Fracture Patterns in Fatal Motorcycle Crashes

Quantum-Boosted Transfer Learning for Underwater Species Classification

Mitigating the Risk of Hazardous Short Circuits in Lithium Batteries

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.