• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech team developed on-chip printed ‘electronic nose’

Bioengineer by Bioengineer
January 28, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Skoltech

Skoltech researchers and their colleagues from Russia and Germany have designed an on-chip printed ‘electronic nose’ that serves as a proof of concept for low-cost and sensitive devices to be used in portable electronics and healthcare. The paper was published in the journal ACS Applied Materials Interfaces.

The rapidly growing fields of the Internet of Things (IoT) and advanced medical diagnostics require small, cost-effective, low-powered yet reasonably sensitive, and selective gas-analytical systems like so-called ‘electronic noses.’ These systems can be used for noninvasive diagnostics of human breath, such as diagnosing chronic obstructive pulmonary disease (COPD) with a compact sensor system also designed at Skoltech. Some of these sensors work a lot like actual noses — say, yours — by using various sensors to detect the complex signal of a gaseous compound.

One approach to creating these sensors is by additive manufacturing technologies, which have achieved enough power and precision to produce the most intricate devices. Skoltech senior research scientist Fedor Fedorov, Professor Albert Nasibulin, research scientist Dmitry Rupasov, and their collaborators created a multisensor ‘electronic nose’ by printing nanocrystalline films of eight different metal oxides onto a multielectrode chip (they were manganese, cerium, zirconium, zinc, chromium, cobalt, tin, and titanium). The Skoltech team came up with the idea for this project.

“For this work, we used microplotter printing and true solution inks. There are a few things that make it valuable. First, the printing resolution is close to the distance between electrodes on the chip, which is optimized for more convenient measurements. We show these technologies are compatible. Second, we managed to use several different oxides, enabling more orthogonal signals from the chip resulting in improved selectivity. We can also speculate that this technology is reproducible and easy to be implemented in industry to obtain chips with similar characteristics, and that is really important for the ‘e-nose’ industry,” Fedorov explained.

In subsequent experiments, this ‘nose’ was able to sniff out the difference between different alcohol vapors (methanol, ethanol, isopropanol, and n-butanol), which are chemically very similar and hard to tell apart, at low concentrations in the air. Since methanol is extremely toxic, detecting it in beverages and differentiating between methanol and ethanol can save lives. To process the data, the team used linear discriminant analysis (LDA), a pattern recognition algorithm, but other machine learning algorithms could also be used for this task.

So far, the device operates at rather high temperatures of 200-400 degrees Celsius. Still, the researchers believe that new quasi-2D materials such as MXenes, graphene, and so on could be used to increase the sensitivity of the array and ultimately allow it to operate at room temperature. The team will continue working in this direction, optimizing the materials used to lower power consumption.

###

Other organizations involved in this research include Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Yuri Gagarin State Technical University of Saratov; Karlsruhe Institute of Technology; Moscow Institute of Physics and Technology; and Breitmeier Messtechnik GmbH.

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/01/skoltech-team-developed-on-chip-printed-electronic-nose/

Related Journal Article

http://dx.doi.org/10.1021/acsami.0c14055

Tags: Atmospheric ScienceBiologyBiomedical/Environmental/Chemical EngineeringBusiness/EconomicsChemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsMedicine/HealthTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Toward a Sustainable Approach for Ethylene Production

October 29, 2025
Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

Join Thousands of Researchers in Houston Exploring the Latest Advances in Fluid Dynamics

October 29, 2025

Enhancing Hygiene and Usability of Menstrual Cups: A Scientific Breakthrough

October 29, 2025

Innovative Carbon Support Enhances Performance and Longevity of Low-Platinum Fuel Cells

October 29, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1290 shares
    Share 515 Tweet 322
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    311 shares
    Share 124 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    200 shares
    Share 80 Tweet 50
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    135 shares
    Share 54 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Pediatric Iodinated Contrast Delivery Worldwide

Neural Networks: The Pathway to Artificial General Intelligence

Mobile Devices Boost Stigmatized Patients’ Online Engagement

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.