• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Skoltech scientists find a way to make pultrusion faster

Bioengineer by Bioengineer
May 7, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Timur Sabirov / Skoltech

A research team from the Skoltech Center for Design, Manufacturing and Materials (CDMM) studied the effects of processing additives – aluminum hydroxide and zinc stearate – on the polymerization kinetics of thermosets used in pultrusion. The research was published in the Journal of Composite Materials.

Fiber-reinforced plastic (FRP) structural elements that have obvious advantages over conventional materials, such as steel, wood, and concrete, are widely used in civil, marine and road construction. FRP structures are manufactured using the pultrusion process, in which polymerization is achieved by continuously pulling the material. Engineers extensively use mathematical models to optimize the pultrusion process and thereby avoid costly experiments often performed by trial and error.

To optimize the pultrusion process, one should carefully consider many parameters that determine the quality of the final product, and composition of the polymer mixture is one of them. Accurate description of pultrusion requires an appropriate model of resin cure kinetics, depending on the processing additive used. If properly chosen, the model helps determine the highest possible pulling speed. In turn, maximizing the pulling speed while maintaining the quality of the resulting profiles is essential for enhancing the efficiency and, therefore, the cost effectiveness of the pultrusion process.

A CDMM team, including PhD student Alexander Vedernikov and MSc student Yaroslav Nasonov led by associate professor Alexander Safonov and CDMM director, professor Iskander Akhatov, proved that additives have a considerable impact on the speed of polymerization in pultrusion. The team found that the pulling speed predictions differed by as much as 1.7 times for compositions with and without additives, which had a dramatic effect on the pultrusion performance.

“Our Laboratory of Composite Materials and Structures is intensively working on process optimization in order to increase profitability while maintaining the required quality of composite structures. To do this, we apply mathematical models of manufacturing processes and validate them in experiments on industrial equipment,” Alexander Safonov explains.

###

Media Contact
Ilyana Zolotareva
[email protected]

Original Source

https://www.skoltech.ru/en/2021/05/skoltech-scientists-find-a-way-to-make-pultrusion-faster/

Related Journal Article

http://dx.doi.org/10.1177/00219983211001528

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025
Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025

Crafting Yogurt Using Ants: A Scientific Innovation

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    89 shares
    Share 36 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    68 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

PLK1 Inhibition Boosts Gemcitabine Apoptosis in Pancreatic Cancer

How Body Weight Shapes First Impressions

Breakthroughs in Pediatric Gastrointestinal Bleeding Diagnosis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.