• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Skoltech scientists developed a novel bone implant manufacturing method

Bioengineer by Bioengineer
November 12, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Pavel Odinev / Skoltech

Scientists from the Skoltech Center for Design, Manufacturing, and Materials (CDMM) have developed a method for designing and manufacturing complex-shaped ceramic bone implants with a controllable porous structure, which largely enhances tissue fusion efficiency. Their research was published in the journal Applied Sciences.

Ceramic materials are resistant to chemicals, mechanical stress, and wear, which makes them a perfect fit for bone implants that can be custom-made thanks to advanced 3D printing technology. Various porous structures are used to ensure effective cell growth around the implant. For tissue fusion to be more efficient, the pores should have a size of several hundred microns, while the implants could be bigger than the pores by several orders of magnitude. In real life, an implant with a specific porous structure should be custom-designed in a very short time-frame. Conventional geometric modeling with the object representation limited to its surface does not work here due to the complex internal structure of the implant.

Skoltech scientists led by Professor Alexander Safonov modeled the implants using a Functional Representation (FRep) method developed by another Skoltech Professor, Alexander Pasko. “FRep modeling of microstructures has a wealth of advantages,” comments Evgenii Maltsev, a Research Scientist at Skoltech and a co-author of the paper. “First, FRep modeling always guarantees that the resulting model is correct, as opposed to the traditional polygonal representation in CAD systems where models are likely to have cracks or disjointed facets. Second, it ensures complete parametrization of the resulting microstructures and, therefore, high flexibility in the fast generation of variable 3D models. Third, it offers a diversity of tools for modeling various mesh structures.”

In their research, the scientists used the FRep method to design cylindrical implants and a cubic diamond cell to model the cellular microstructure. CDMM’s Additive Manufacturing Lab 3D-printed ceramic implants based on their design and tested them under axial compression.

Interestingly, the new method enables changing the porous structure so as to produce implants of different densities to accommodate the patients’ individual needs.

###

Media Contact
Ilyana Zolotareva
[email protected]

Related Journal Article

http://dx.doi.org/10.3390/app10207138

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyComputer ScienceMedicine/HealthOrthopedic MedicineRehabilitation/Prosthetics/Plastic SurgeryResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Enhancing Community Care: Insights from WHO Training

December 21, 2025
Genetic Insights into Aedes aegypti Expansion in California

Genetic Insights into Aedes aegypti Expansion in California

December 21, 2025

Telehealth: Transforming Pre- and Post-Transplant Care

December 21, 2025

Global Eating Disorders Burden: 1990-2021 Insights

December 21, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Community Care: Insights from WHO Training

Genetic Insights into Aedes aegypti Expansion in California

Telehealth: Transforming Pre- and Post-Transplant Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.