• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Size matters when it comes to atomic properties

Bioengineer by Bioengineer
March 18, 2021
in Chemistry
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Neuroncollective, Daniel Spacek, Pavel Travnicek

A study from Chalmers University of Technology, Sweden, has yielded new answers to fundamental questions about the relationship between the size of an atom and its other properties, such as electronegativity and energy. The results pave the way for advances in future material development. For the first time, it is now possible under certain conditions to devise exact equations for such relationships.

“Knowledge of the size of atoms and their properties is vital for explaining chemical reactivity, structure and the properties of molecules and materials of all kinds. This is fundamental research that is necessary for us to make important advances,” explains Martin Rahm, the main author of the study and research leader from the Department of Chemistry and Chemical Engineering at Chalmers University of Technology.

The researchers behind the study, consisting of colleagues from the University of Parma, Italy, as well as the Department of Physics at Chalmers University of Technology, have previously worked with quantum mechanical calculations to show how the properties of atoms change under high pressure. These results were presented in scientific articles in the Journal of the American Chemical Society and ChemPhysChem.

The new study, published in the journal Chemical Science, constitutes the next step in their important work, exploring the relationship between the radius of an atom and its electronegativity – a vital piece of chemical knowledge that has been sought since the 1950s.

Establishing useful new equations

By studying how compression affects individual atoms, the researchers have been able to derive a set of equations that explain how changes in one property – an atom’s size – can be translated and understood as changes in other properties – the total energy and the electronegativity of an atom. The derivation has been made for special pressures, at which the atoms can take one of two well-defined energies, two radii and two electronegativities.

“This equation can, for example, help to explain how an increase in an atom’s oxidation state also increases its electronegativity and vice versa, in the case of a decrease in oxidation state,” says Martin Rahm.

A key question for the science of unexplored materials

One aim of the study has been to help identify new opportunities and possibilities for the production of materials under high pressure. At the centre of the earth, the pressure can reach hundreds of gigapascals – and such conditions are achievable in laboratory settings today. Examples of areas where pressure is used today include the synthesis of superconductors, materials which can conduct electric current without resistance. But the researchers see many further possibilities ahead.

“Pressure is a largely unexplored dimension within materials science, and the interest in new phenomena and material properties that can be realised using compression is growing,” says Martin Rahm.

Creating the database they themselves wished for

The large amounts of data that the researchers have computed through their work have now been summarised into a database, and made available as a user-friendly web application. This development was sponsored by Chalmers Area of Advance Materials and made possible through a collaboration with the research group of Paul Erhart at the Department of Physics at Chalmers.

In the web application, users can now easily explore what the periodic table looks like at different pressures. In the latest scientific publication, the researchers provide an example for how this tool can be used to provide new insight into chemistry. The properties of iron and silicon – two common elements found in the earth’s crust, mantle and core – are compared, revealing large differences at different pressures.

“The database is something I have been missing for many years. Our hope is that it will prove to be a helpful tool, and be used by many different chemists and materials researchers who study and work with high pressures. We have already used it to guide theoretical searches for new transition metal fluorides,” says Martin Rahm.

###

Read the scientific article “Relating atomic energy, radius and electronegativity through compression” here.

The article was written by Martin Rahm, Department of Chemistry and Chemical Engineering, Paul Erhart, Department of Physics at Chalmers University of Technology, and Roberto Cammi, University of Parma.

For more information, contact:

Martin Rahm

Assistant Professor, Chemistry and Chemical Engineering

[email protected]

+46 31 772 3050

More about atoms and high pressures

At high pressures, atoms and molecules are squeezed closer together, which affects their electronic structure. Among other things, compression can lead to the formation of new chemical bonds. Semiconductors and insulators can also be turned into metals. In some cases, materials formed under high pressures may retain their structure and properties when the pressure returns to normal. A typical example is diamond, which is formed from ordinary graphite under high pressure.

Media Contact
Joshua Worth
[email protected]

Original Source

https://www.chalmers.se/en/departments/chem/news/Pages/newskb.aspx

Related Journal Article

http://dx.doi.org/10.1039/D0SC06675C

Tags: Atmospheric ChemistryAtomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsSuperconductors/Semiconductors
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025
Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025

Innovative Imaging Technique Reveals Elemental Distributions in Frozen Solvents within Nanomaterials

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    36 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

MARCO Drives Myeloid Suppressor Cell Differentiation, Immunity

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.