• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simulations show how bridges are damaged during earthquakes, and how we can prevent it

Bioengineer by Bioengineer
December 3, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Tokyo, Japan – Researchers from Tokyo Metropolitan University have carried out a detailed simulation showing how a common type of bridge fails during large-scale earthquakes. They modeled “I-shaped girder” bridges, looking at the step-by-step mechanism by which they yield and deform under lateral forces, starting at the ends. Reinforcing ribs were shown to be effective against lateral forces and improve load-bearing capacity. Their work points bridge engineers to rational design strategies to make more resilient infrastructure.

Stress and deformation of a bridge under a transverse lateral force.

Credit: Tokyo Metropolitan University

Tokyo, Japan – Researchers from Tokyo Metropolitan University have carried out a detailed simulation showing how a common type of bridge fails during large-scale earthquakes. They modeled “I-shaped girder” bridges, looking at the step-by-step mechanism by which they yield and deform under lateral forces, starting at the ends. Reinforcing ribs were shown to be effective against lateral forces and improve load-bearing capacity. Their work points bridge engineers to rational design strategies to make more resilient infrastructure.

Major earthquakes can have a devastating impact on infrastructure. The effects of a severely damaged bridge, for example, are not limited to the tragedy that befalls people on it but extends to how the loss of access affects emergency services, evacuation efforts, and the transport of crucial supplies. Understanding how seismic activity impacts common bridge structures is therefore crucial, not only to build bridges that can withstand strong quakes, but how to prevent the failure of existing ones through effective reinforcement. Though numerical models exist which are used to assess the resilience of bridge superstructures, for the most part, there are very few examples which examine how each part of the whole bridge structure behaves during large-scale earthquakes.

A team led by Professor Jun Murakoshi of Tokyo Metropolitan University have been studying detailed models which accurately reflect the real behavior of entire structures, with a focus on how they might inform new design strategies. They looked at the failure process and impact on load-bearing capacity caused by lateral shaking of an “I-shaped girder” bridge, a common bridge type with a span length of 30m; supported steel girders shaped to have a cross-section that looks like a capital “I” carry a flat “deck slab” over which cars and people can pass. They subjected their model bridge to the lateral forces commonly seen during quakes, considering the response when the force was applied in the longitudinal and transverse directions to the girders.

The model revealed a detailed picture of how the bridge yields and deforms. For example, when the force was applied in the transverse direction, the first place to get affected was the lower part of the vertical stiffeners on the support, followed by yielding of the diagonal members of the end cross frame. The vertical stiffeners then go on to yield until finally, the gusset plate (a steel plate which connects lateral members) starts to deform. Though this does not lead to bridges failing, there are already reports of deformations impeding the passage of emergency vehicles after large-scale earthquakes.

The question now becomes how we might prevent this from happening. The team went on to study the effect of reinforcing ribs on the structure: a model with reinforcing ribs showed how stress acting on the girders and the end cross frame connecting them was reduced. The team’s work thus provides rational insight into how bridge structures may be designed and reinforced to make our infrastructure safer, as well as better strategies to assess their safety.

This work was supported by the Japan Iron and Steel Federation.



Journal

International Journal of Steel Structures

DOI

10.1007/s13296-022-00672-5

Article Title

Damage Mechanism and Load-Carrying Capacity at Girder End of Existing Steel Girder Bridge Under Seismic Lateral Force

Article Publication Date

3-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Motile Sperm and Frequent Abortions in Spreading Earthmoss

Motile sperm and frequent abortions in spreading earthmoss

January 27, 2023
Pictures of natural Physostegia chlorotic mottle virus (PhCMoV)-infected plants.

A transnational collaboration leads to the characterization of an emergent plant virus

January 26, 2023

Study shows that bioprinted artificial skin can be used in cosmetics and drugs testing

January 26, 2023

First report of rare cat discovered on Mt. Everest

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    63 shares
    Share 25 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    57 shares
    Share 23 Tweet 14
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New species of microalgae discovered

New technology may help inform brain stimulation

Discovery of new form of carbon, called long-range ordered porous carbon (LOPC)

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In