• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Simulations show effects of buoyancy on drift in Florida Current

Bioengineer by Bioengineer
February 11, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Using data from GPS-equipped buoys, a new use for a widely used approach for fluid dynamics provides clues for ocean dynamics, ranging from litter cleanup to algae movement

IMAGE

Credit: Maria Josefina Olascoaga


WASHINGTON, February 11, 2020 — Acquiring a better understanding for how objects drift in the ocean has importance for a wide range of uses, like tracking algae, predicting the locations of wreckage and debris and better focusing how to clean up ocean litter. Most ways researchers model such movements have largely been put together piece by piece and lack a systematic approach. One new effort looks to provide a clearer alternative.

Researchers have released the results from an experiment aimed at tracking different objects as they drift in the Florida Current, a thermal ocean current that flows from the Straits of Florida around the Florida Peninsula and along the southeastern coast of the United States before joining the Gulf Stream Current near Cape Hatteras. Using satellite data, the group developed a new model for how objects drift based on the results and has been able to keep tabs on four types of custom buoys or drifters for one week.

Lead author Maria Josefina Olascoaga said she and her group are among the first to apply the Maxey-Riley framework to the field of oceanography and see its broad implications for many branches of ocean science. They discuss their work in this week’s Physics of Fluids, from AIP Publishing.

“Currently, there are efforts aimed at cleaning up mostly plastic litter in the ocean,” said Olascoaga. “The success of those efforts would strongly benefit from our work, as it provides means for effectively designing cleaning strategies by allowing one to better identify the regions within the great garbage patches where litter congregates.”

Determining how objects move in a flowing fluid has been notoriously difficult. After nearly a century of research, the Maxey-Riley framework was offered in the 1980s for solving for the fluid flow equation with moving boundaries and has become a major tool in studying particle motion in fluid dynamics.

In December 2017, researchers released cuboidal, spherical, plate-shaped and mat-shaped designed drifters into the waters off the coast of Florida, each about 1 cubic foot large and outfitted with a GPS tracker that pinged satellites every six hours.

The mat-shaped special drifter was designed to mimic the properties of sargassum, a macroalgae that has been implicated in foul odors, water supply discoloration and metal rusting on the shores of the Caribbean.

The group focused on how several variables affected each buoy’s inertia over time, including radius, shape, buoyancy and immersion depth. From there, they found that a buoy’s buoyancy had the greatest effect on its trajectory in the ocean.

Olascoaga hopes the group’s work inspires others to use experimental data to model the world’s oceans. The group hopes to further explore the movements of sargassum macroalgae.

###

The article, “Observation and quantification of inertial effects on the drift of floating objects at the ocean surface,” is authored by Maria Josefina Olascoaga, Francisco Beron-Vera, Philippe Miron, Joaquin Trinanes, Nathan Putman, Rick Lumpkin and Gustavo Goni. The article will appear in Physics of Fluids on Feb. 11, 2020 (DOI: 10.1063/1.5139045). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/1.5139045.

ABOUT THE JOURNAL

Physics of Fluids is devoted to the publication of original theoretical, computational, and experimental contributions to the dynamics of gases, liquids, and complex or multiphase fluids. See https://aip.scitation.org/journal/phf.

Media Contact
Larry Frum
[email protected]
301-209-3090

Related Journal Article

http://dx.doi.org/10.1063/1.5139045

Tags: Algorithms/ModelsAtmospheric ScienceChemistry/Physics/Materials SciencesEarth ScienceGeophysicsOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

Random-Event Clocks Offer New Window into the Universe’s Quantum Nature

September 11, 2025
Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

Portable Light-Based Brain Monitor Demonstrates Potential for Advancing Dementia Diagnosis

September 11, 2025

Scientists reinvigorate pinhole camera technology for advanced next-generation infrared imaging

September 11, 2025

BeAble Capital Invests in UJI Spin-Off Molecular Sustainable Solutions to Advance Disinfection and Sterilization Technologies

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auranofin’s Anti-Leishmanial Effects: Lab and Animal Studies

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.