• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, April 11, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Simple device monitors health using sweat

Bioengineer by Bioengineer
June 23, 2020
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jennifer M. McCann/ Penn State

A device that monitors health conditions in the body using a person’s sweat has been developed by Penn State and Xiangtan University researchers, according to Huanyu “Larry” Cheng, assistant professor of engineering science and mechanics, Penn State.

“We want to be able to analyze the sweat from daily exercise or from the heat of the sun because in sweat we have a lot of biomarkers like pH and glucose that will be a really nice indicator for disease progression or diagnostics,” Cheng said.

The device will be on a patch applied to the skin near sweat glands. It consists of a small vial containing multiple chambers that has a hydrophobic — water repelling — valve near the opening made of silicone rubber. The channel has a hydrophilic — water attracting — coating for easy collection of the sweat. Unlike other devices that require two openings, the single opening reduces the amount of evaporation, leading to longer storage time for later analysis.

On-the-spot analysis can be done using a colorimetric approach in which a color-coded analyte is preplaced in the various chambers. This sensitive chemical responds to the pH or glucose level and can be read by the naked eye or a photo taken with a smartphone. Also, the researchers can analyze the sweat at different time points using different chambers — called chrono-sampling.

“The two-valve device is more complicated and requires using a clean-room technique called photolithography. Our simpler one-valve device can be made without expensive equipment utilizing micromachining,” Cheng said.

The device will be of interest to the healthcare industry, and particularly in athletics, where it can be used to monitor overheating or to adjust exercise levels for optimum performance. The researchers are also collaborating with a researcher at Penn State Hershey Medical School on disease monitoring. The device can have one chamber color-coded for pH, a second for glucose and a third for sodium, all of which are disease markers.

Their results appear online in the journal Lab on a Chip in an article titled “Skin-interfaced microfluidic devices with one-opening chambers and hydrophilic valves for sweat collection and analysis.” Lead authors are Yingxue Zhang, co-advised by Cheng and Xiufeng Wang, Xiangtan University, China, and Wang’s student Yao Chen.

The National Natural Science Foundation of China, the Natural Science Foundation of Hunan Province, and Penn State supported this work.A device that monitors health conditions in the body using a person’s sweat has been developed by Penn State and Xiangtan University researchers, according to Huanyu “Larry” Cheng, assistant professor of engineering science and mechanics, Penn State.

“We want to be able to analyze the sweat from daily exercise or from the heat of the sun because in sweat we have a lot of biomarkers like pH and glucose that will be a really nice indicator for disease progression or diagnostics,” Cheng said.

The device will be on a patch applied to the skin near sweat glands. It consists of a small vial containing multiple chambers that has a hydrophobic — water repelling — valve near the opening made of silicone rubber. The channel has a hydrophilic — water attracting — coating for easy collection of the sweat. Unlike other devices that require two openings, the single opening reduces the amount of evaporation, leading to longer storage time for later analysis.

On-the-spot analysis can be done using a colorimetric approach in which a color-coded analyte is preplaced in the various chambers. This sensitive chemical responds to the pH or glucose level and can be read by the naked eye or a photo taken with a smartphone. Also, the researchers can analyze the sweat at different time points using different chambers — called chrono-sampling.

“The two-valve device is more complicated and requires using a clean-room technique called photolithography. Our simpler one-valve device can be made without expensive equipment utilizing micromachining,” Cheng said.

The device will be of interest to the healthcare industry, and particularly in athletics, where it can be used to monitor overheating or to adjust exercise levels for optimum performance. The researchers are also collaborating with a researcher at Penn State Hershey Medical School on disease monitoring. The device can have one chamber color-coded for pH, a second for glucose and a third for sodium, all of which are disease markers.

###

Their results appear online in the journal Lab on a Chip in an article titled “Skin-interfaced microfluidic devices with one-opening chambers and hydrophilic valves for sweat collection and analysis.” Lead authors are Yingxue Zhang, co-advised by Cheng and Xiufeng Wang, Xiangtan University, China, and Wang’s student Yao Chen.

The National Natural Science Foundation of China, the Natural Science Foundation of Hunan Province, and Penn State supported this work.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/D0LC00400F

Tags: Biomedical/Environmental/Chemical EngineeringDiagnosticsMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Computer model fosters potential improvements to ‘bionic eye’ technology

April 9, 2021
IMAGE

Abrupt ice age climate changes behaved like cascading dominoes

April 9, 2021

Earth’s crust mineralogy drives hotspots for intraterrestrial life

April 9, 2021

Study investigates link between lactation and visceral, pericardial fat

April 9, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In