• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Silicosis is on the rise, but is there a therapeutic target?

Bioengineer by Bioengineer
December 6, 2018
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: David Gosset / P@CYFIC facility / CBM / CNRS


Researchers from the CNRS, the University of Orléans, and the company Artimmune, in collaboration with Turkish clinicians from Atatürk University, have identified a key mechanism of lung inflammation induced by silica exposure, which leads to silicosis, an incurable disease. Their study in mice and patients, published in Nature Communications (December 6th, 2018), shows that this inflammation can be prevented by extracellular DNA degradation, suggesting a new therapeutic target.

Provoked by silica inhalation, silicosis is a fatal disease, the only cure being lung transplantation. Though known as a miner’s disease, it is far from a relic of the past (1): new operations using high-pressure sand–like denim sandblasting and fracking in shale gas extraction–expose workers and neighbor residents. Worldwide, silicosis still affects tens of millions of people, especially those active in the construction and mining industries, but also textile and dentistry professionals.

Once in the airways, silica microparticles provoke cell stress and death, and finally, chronic inflammation and fibrosis (replacement of normal lung tissue with scar tissue). This leads to an irreversible reduction in respiratory capacity as silica is not eliminated. This is where Valérie Quesniaux’s team at the Experimental and Molecular Immunology and Neurogenetics research laboratory (CNRS / University of Orléans) steps in. They looked at the mechanism underlying silica-induced lung inflammation.

In mice exposed to silica, the researchers showed that DNA released into the airways upon cell death activates a signaling cascade known as the STING pathway. This pathway triggers lung inflammation that ultimately may develop into silicosis. They also demonstrated that treatment with DNase I, an enzyme that degrades the DNA released into the airways, prevents silica-induced lung inflammation.

The team worked with clinicians who for the last decade have been tracking a 21st-century silicosis epidemic in young men that has affected entire Turkish villages. The culprit is denim sandblasting to give jeans a fashionable used appearance.(2) At Atatürk University, Metin Akgün and his colleagues noted a rise in the quantity of released DNA and inflammatory markers in the blood and sputum of silicosis patients. A high level of STING pathway activity was also detected in the lung tissue of patients with pulmonary fibrosis.

Thus the mechanism discovered in mice exposed to silica seems to also play a role in humans. The scientists’ findings suggest that DNase I, already used in the treatment of other pathologies such as cystic fibrosis, might help patients exposed to silica.

###

This research was jointly funded by the European Union and the Centre-Val de Loire regional authority through a grant from the European Regional Development Fund (no. 2016-00110366).

Notes:

(1) For more information, read https://news.cnrs.fr/articles/using-history-to-heal

(2) Over 96% of workers in this field develop silicosis, the highest known rate of prevalence for this disease. Though now illegal in Turkey, denim sandblasting is still practiced in other countries.

Media Contact
Veronique Etienne
[email protected]
33-144-965-137

Original Source

http://www2.cnrs.fr/en/3186.htm

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-07425-1

Tags: Cell BiologyDisease in the Developing WorldEnvironmental HealthImmunology/Allergies/AsthmaMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Mechanisms of Amino Acid Transport in Plants Unveiled

August 22, 2025
Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

Unraveling Fat Maps: Microfluidics and Mass Spectrometry Illuminate Lipid Landscapes in Tiny Worms

August 22, 2025

SARS-CoV-2 Triggers Pro-Fibrotic, Pro-Thrombotic Foam Cells

August 22, 2025

RETICULATA1: Key Plastid Basic Amino Acid Transporter

August 22, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Learning Framework Unveils the Evolution of Nanoscience Characterization Techniques

Revolutionizing Hydrogen Production with Enhanced Modified Ilmenite Oxygen Carriers

Exploring Cardiovascular Health Disparities Across Race and Gender in Medicare Fee-for-Service Populations

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.