• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, October 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Shark skin microbiome resists infection

Bioengineer by Bioengineer
November 4, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: © 2019 Claudia Pogoreutz


A survey of the shark skin microbiome provides the first step toward understanding the remarkable resilience of shark wounds to infection.

In the wild, blacktip reef sharks are often seen bearing wounds, but they rarely exhibit obvious signs of infection around the wounds. As a first step toward understanding this phenomenon, an international team led by researchers at KAUST’s Red Sea Research Center investigated the microbial community living on the skin of sharks.

The team collected skin mucus samples from the backs and gills of wild-caught blacktip reef sharks around the Seychelles Islands. Next, they sequenced the 16S rRNA gene from these samples in order to identify the bacteria. Finally, they compared the bacterial communities from different samples to detect changes in response to injury.

The team’s analysis revealed no difference between the bacterial communities on injured skin on gills and uninjured gills or backs. In other words, there was no evidence of infection around the wounds. “We were surprised not to find any substantial change in the skin bacterial communities,” says Claudia Pogoreutz, the postdoctoral fellow who led the study.

“This suggests shark skin doesn’t become infected easily and that the native bacterial community of the skin can be maintained even after injury,” she adds. “We really need to delve deeper into bacterial functions and innate immunity of sharks to understand what is really going on and how wound healing in sharks is mediated.”

However, the team did find differences in the bacterial communities collected from the skin of sharks at different locations. Although the sites were just a few kilometers apart, they could be relatively isolated from each other by factors, such as ocean currents and the reluctance of blacktip reef sharks to move between habitats or cross deeper straits. The differences in shark skin microbial communities may reflect differences in the ambient environment, such as temperature, population density, nutrient availability or pollution, but researchers cannot rule out the possibility that the changes could provide an adaptive benefit to the sharks.

Based on their findings, the team identified a core skin microbiome that is conserved across blacktip reef sharks, alongside site-specific differences. They also found no changes in the microbiome around wounds, suggesting that they don’t get infected or that any infections are too mild to detect.

Plenty of questions remain: from understanding the regional differences to figuring out if and how the microbiome contributes to wound healing and infection resistance. “There’s still so much to learn with respect to shark skin-associated bacteria,” says Pogoreutz.

###

Media Contact
Carolyn Unck
[email protected]
966-054-470-0408

Original Source

https://discovery.kaust.edu.sa/en/article/899/shark-skin-microbiome-resists-infection

Related Journal Article

http://dx.doi.org/10.1186/s42523-019-0011-5

Tags: BacteriologyBiodiversityBiologyEcology/EnvironmentFisheries/AquacultureMarine/Freshwater BiologyMicrobiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Exploring the GT92 Gene Family in Cotton

October 11, 2025
blank

Methylome Changes Drive Fiber Differentiation in Cotton

October 11, 2025

New Framework Uncovers Differential Chromatin Interactions

October 11, 2025

Sex Differences in Pig Blood Gene Expression

October 11, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1214 shares
    Share 485 Tweet 303
  • New Study Reveals the Science Behind Exercise and Weight Loss

    102 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    99 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    88 shares
    Share 35 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Heart Health: Targeting Autonomic Nervous System

Unveiling Mental Health Challenges in Autistic Girls

Soft Exosuit Enhances Shoulder and Elbow Function Post-Injury

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.