• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, May 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Sex differences in 'body clock' may benefit women's heart health

Bioengineer by Bioengineer
January 10, 2019
in Biology
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Female mice still regulate blood pressure properly, even with lack of a circadian clock gene

Rockville, Md. (January 10, 2019)–Research suggests that a gene that governs the body’s biological (circadian) clock acts differently in males versus females and may protect females from heart disease. The study is the first to analyze circadian blood pressure rhythms in female mice. The research, published ahead of print in the American Journal of Physiology–Regulatory, Integrative and Comparative Physiology, was chosen as an APSselect article for January.

The body’s circadian clock–the biological clock that organizes bodily activities over a 24-hour period– contributes to normal variations in blood pressure and heart function over the course of the day. In most healthy humans, blood pressure dips at night. People who do not experience this temporary drop, called “non-dippers,” are more likely to develop heart disease. The circadian clock is made up of four main proteins (encoded by “clock genes”) that regulate close to half of all genes in the body, including those important for blood pressure regulation.

Previous research has shown that male mice that are missing one of the four clock genes (PER1) become non-dippers and have a higher risk for heart and kidney disease. A research team studied the circadian response and blood pressure of female mice that lack PER1 and compared them with a healthy female control group. On both low- and high-salt diets, both groups “retained an apparent circadian rhythm” of blood pressure, the researchers explained. Unlike the male mice in previous research, the females without PER1 showed normal dips in blood pressure overnight.

These results suggest that the lack of PER1 acts differently in males and females. The findings are consistent with research showing that premenopausal women are less likely to be non-dippers than men of the same age. “This study represents an important step in understanding sex differences in the regulation of cardiovascular function by the circadian clock,” the researchers wrote.

###

Read the full article, “Female C57BL/6J mice lacking the circadian clock protein PER1 are protected from nondipping hypertension,” published ahead of print in the American Journal of Physiology–Regulatory, Integrative and Comparative Physiology. It is highlighted as one of this month’s “best of the best” as part of the American Physiological Society’s APSselect program. Read all of this month’s selected research articles.

NOTE TO JOURNALISTS: To schedule an interview with a member of the research team, please contact the [email protected]>APS Communications Office or 301-634-7314. Find more research highlights in the APS Press Room.

Physiology is the study of how molecules, cells, tissues and organs function in health and disease. Established in 1887, the American Physiological Society (APS) was the first U.S. society in the biomedical sciences field. The Society represents more than 10,000 members and publishes 15 peer-reviewed journals with a worldwide readership.

Media Contact
Communications Office
[email protected]
301-634-7314
http://dx.doi.org/10.1152/ajpregu.00381.2017

Tags: BiologyCardiologyPhysiologySex-Linked Conditions
Share12Tweet8Share2ShareShareShare2

Related Posts

Hakea laurina (pincushion hakea)

Cluster-Root Secretions Enhance Phosphorus Accessibility in Nutrient-Poor Soils

May 23, 2025
Image 1

How Scientists Unraveled the Mystery Behind the Gigantic Size of Extinct Ground Sloths—and What Led to Their Demise

May 22, 2025

Researchers Identify Potential Therapeutic Targets for Dogs with Chiari-Like Malformation

May 22, 2025

From Chaos to Clarity: Innovative Tool Uncovers Hidden Connections in Complex Cell Data

May 22, 2025
Please login to join discussion

POPULAR NEWS

  • Effects of a natural ingredients-based intervention targeting the hallmarks of aging on epigenetic clocks, physical function, and body composition: a single-arm clinical trial

    Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    91 shares
    Share 36 Tweet 23
  • Analysis of Research Grant Terminations at the National Institutes of Health

    79 shares
    Share 32 Tweet 20
  • Health Octo Tool Links Personalized Health, Aging Rate

    68 shares
    Share 27 Tweet 17
  • Universe Fades Faster Than Expected—Yet Still Over Vast Timescales

    55 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Cluster-Root Secretions Enhance Phosphorus Accessibility in Nutrient-Poor Soils

Boosting Stem Cell-Derived Islet Survival in Hypoxia

Assessing Breast Cancer Care Quality in Iran

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.