• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, May 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Seeking sustainable solutions for the global challenge of safe drinking water

Bioengineer by Bioengineer
June 1, 2021
in Chemistry
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Pitt’s Leanne Gilbertson will use a $500K CAREER award to address the UN’s Sustainable Development Goal to ensure access to clean water

IMAGE

Credit: University of Pittsburgh

Lead is not the only danger when it comes to drinking water – harmful bacteria can also find their way into the water we consume despite treatment prior to distribution. In the face of water scarcity and aging infrastructure, there is a need for innovative, affordable, and portable solutions to sustainably provide safe drinking water across the globe.

Engineering researchers from the University of Pittsburgh will use a $500K CAREER award from the National Science Foundation to create a sustainable material design framework to mitigate pathogen exposure in this invaluable resource.

“In addition to tap water from large-scale, municipal distribution, there are many other scenarios where we may want to disinfect our water before we drink it, such as when it is sourced from private wells or nature,” said Leanne Gilbertson, lead researcher and assistant professor of civil and environmental engineering at Pitt’s Swanson School of Engineering. “There are also emerging sources of drinking water, such as water reuse where wastewater is treated to potable standards, presenting new disinfection challenges.”

In this project, Gilbertson’s team will examine graphitic carbon nitride (g-C3N4), a non-metal material that possesses antimicrobial properties when activated with visible light. It is proposed as a sustainable material because it is developed with low-cost, abundant resources.

“We will modify the chemistry of graphitic carbon nitride to improve its photocatalytic performance,” Gilbertson said. “When light is absorbed by the material, it generates reactive oxygen species that can kill microorganisms.”

The research team will integrate the enhanced materials into a drinking water treatment device, such as a filter or portable reactor, that can be used as a viable, cost-effective solution to inactivate harmful bacteria in drinking water. They will collaborate with Aquisense, an industry leader in LED-enabled disinfection, to develop a point-of-use model.

“By manipulating the structure and composition of graphitic carbon nitride at the atomic level, we have the ability to control its optical absorption and performance for photocatalytic disinfection. Using LED technology further enables us to flexibly configure the light wavelength best suited for maximum absorption of a designed material,” said Yan Wang, a postdoctoral associate at Lawrence Berkeley National Lab and former PhD student in the Gilbertson Group who started this project.

Through this research, the team will assess whether this material is indeed a sustainable alternative for treating drinking water.

“We will apply life cycle assessment (LCA) to investigate the environmental impacts associated with synthesizing graphitic carbon nitride,” said Nathalia Aquino de Carvalho, a current PhD student in the Gilbertson group and lead author of their recent paper that lays the foundation for this work. “LCA will enable us to identify hot spots in the synthesis, tradeoffs of different synthesis routes, and opportunities to reduce the environmental footprint prior to scaling production. Applying LCA while we are designing the material enables competitive, environmentally responsible development of graphitic carbon nitride.”

Gilbertson’s group ultimately hopes to create a point-of-use device that addresses the challenge of sustainably providing safe drinking water. They also plan to develop educational resources for the general public through a podcast series and a “Science Through Storytelling” program to engage elementary students in STEM.

###

Media Contact
Leah Russell
[email protected]

Original Source

https://www.engineering.pitt.edu/News/2021/Gilbertson-CAREER/

Tags: BacteriologyBiochemistryBiomedical/Environmental/Chemical EngineeringCivil EngineeringHydrology/Water ResourcesMaterialsMicrobiologyPollution/RemediationTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Artistic representation of CO2 capture from a moisture-laden gas stream using CALF-20, a zinc-based metal-organic framework.

Decoding Carbon Capture: How Nature and Technology Trap Carbon

May 13, 2025
Carbon Dioxide Enables Controlled Anionic Polymerization

Carbon Dioxide Enables Controlled Anionic Polymerization

May 13, 2025

Groundbreaking Study Maps Biochar’s Global Role in ESG and Climate Solutions

May 13, 2025

Scientists Engineer Enzymes from the Ground Up: A Breakthrough in Synthetic Biology

May 13, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Volatile-Rich Cap Found Above Yellowstone Magma

    665 shares
    Share 266 Tweet 166
  • Natural Supplement Shows Potential to Slow Biological Aging and Enhance Muscle Strength

    88 shares
    Share 35 Tweet 22
  • Analysis of Research Grant Terminations at the National Institutes of Health

    73 shares
    Share 29 Tweet 18
  • The Rise of Eukaryotic Cells: An Evolutionary Algorithm Spurs a Major Biological Transition

    67 shares
    Share 27 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Pulmonary Vasodilator Use in Preterm US Infants

Blocking Plasma Cell Fate Boosts B Cell Immunity

Selective CDK4 Inhibition Shows Promise Against Breast Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.