• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Sea snakes show their sensitive side to court potential mates

Bioengineer by Bioengineer
June 7, 2021
in Health
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jenna Crowe-Riddell

Decades of research has revealed the remarkable morphological adaptations of sea snakes to aquatic life, which include paddle-shaped tails, salt-excreting glands, and the ability to breathe through their skin.

In a new study published in Biological Journal of the Linnean Society, researchers at the University of Adelaide detail the enlarged touch receptors that evolved in male turtle-headed sea snakes (Emydocephalus annulatus), to help them locate and court females in aquatic environments.

Lead author, Jenna Crowe-Riddell, PhD graduate at the University of Adelaide’s School of Biological Sciences, says on land, snakes use tongue-flicking to sense and follow sex pheromones left by other snakes, but in the water these chemicals are diluted.

“What’s more, turtle-headed sea snakes can’t see very clearly underwater; they’ve been known to court anything long and dark, including sea cucumbers. To make matters worse, once a female is found the male must overcome buoyancy force so he doesn’t float away from his potential mate.

“Most snakes have thousands of touch receptors all over their face that look like a dusting of freckles. These touch receptors have become much larger in sea snakes, potentially to sense vibrations made by swimming mates, prey or predators.

“When we took a closer look at museum specimens, we discovered male turtle-headed sea snakes have larger touch receptors overall than females. We also found mature males have enlarged scale structures on their snout and chin, and their cloaca – an all-purpose hole used for reproduction and excretion.”

Crowe-Riddell and colleagues used a range of microscopy techniques to characterise the ultrastructure of enlarged scale structures. They found that the structures on the chin and cloaca have specialised cells indicative of touch receptors – which suggests they provide sensory feedback for the male.

The researchers suggest that chin receptors may help males orient towards the direction of the female’s swimming, whereas the cloacal receptors may help the male to align himself for successful reproduction.

“We think these receptors evolved to help males maintain the correct points of contact with the female during mating, which is a tricky task when you’re a tube-shaped limbless snake,” said Crowe-Riddell.

Males also have a spine-like structure on the snout known as a ‘rostral spine’ that is used to prod the back of females during courtship.

“The rostral spine may be used to stimulate the female, such types of tactile foreplay are thought to be important for mating in snakes because they can cause beneficial hormonal changes and receptive behaviours in females,” said Crowe-Riddell.

“Reptiles are not typically appreciated for their intimate interactions, but our research is revealing that sea snakes have fascinating tactile adaptations for intra-species communication.”

The evolutionary transition from terrestrial to aquatic life has influenced the signaling systems of many secondarily aquatic animals.

“As we build a more complete picture of underwater perception, sea snakes are becoming a fantastic example of how evolution creates opportunity from constraints,” said Crowe-Riddell.

Further research could examine the role that tactile sensory modalities play in mate selection, an often overlooked aspect of snake social behaviour.

There are at least three species of turtle-headed sea snakes. These species occur in shallow-water habitats in Australia, south-east Asia and the Indo-Pacific.

In the study, researchers examined 59 specimens collected from offshore reefs in the Timor Sea, and accessed from the Australian Museum, the Art Gallery of Northern Territory, and the Western Australian Museum. The study was co-authored by researchers at the University of Melbourne and the University of New Caledonia.

###

Media Contact
Dr. Jenna Crowe-Riddell
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/biolinnean/blab069

Tags: BiologyDevelopmental/Reproductive BiologyFisheries/AquacultureMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
blank

AI Diagnoses Structural Heart Disease via ECG

July 17, 2025

Functional Regimes Shape Soil Microbiome Response

July 17, 2025

Stealth Adaptations in Large Ichthyosaur Flippers

July 17, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.