• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Thursday, May 19, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scripps Florida scientists identify novel compound to alleviate pain and itch

Bioengineer by Bioengineer
December 1, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: James McEntee

JUPITER, FL- December 1, 2016 – In a new study, scientists from the Florida campus of The Scripps Research Institute (TSRI) have identified a possible drug candidate that suppresses pain and itch in animal models. Their new approach also reduces the potential for drug abuse and avoids the most common side effects–sedation and anxiety–of drugs designed to target the nervous system's kappa opioid receptors (KORs).

"The most significant aspect of the study is that we can preserve itch and pain treatment qualities in a KOR agonist that we developed–triazole 1.1–while avoiding the euphoria associated with narcotic opioids and the dysphoria associated with some other selective KOR agonists," said TSRI Professor Laura Bohn, senior author of the new study.

The research was published this week online ahead of print in the journal Science Signaling.

Circumventing Side Effects

KORs help regulate the release of the neurotransmitter dopamine. Drugs that target KORs have shown promise as therapeutic candidates because of their efficacy for treating chronic itch and relieving pain. Unlike opioid narcotics that target other opioid receptors, these compounds do not produce a "high" or increased risk of overdose; however, they can deplete the body's supply of dopamine and produce dysphoria and sedation, side effects that have limited their clinical development.

Bohn's laboratory has pioneered the concept that KOR signaling can be fine-tuned to preferentially activate certain pathways over others so that the receptor signals through G proteins rather than through a protein called β-arrestin2.

In the new study, the researchers used rodent models to compare this kind of "biased" KOR agonist, called triazole 1.1, and a conventional KOR agonist.

They found that triazole 1.1 could indeed circumvent the two side effects of previously developed KOR compounds without decreasing dopamine levels, a property associated with dysphoria and sedation.

"This adds to the mounting evidence that shows analgesic effects can be separated from the sedative and dysphoric effects by altering how the agonist engages the receptor," said TSRI Research Associate Tarsis Brust, first author of the study.

Bohn said the new findings clearly demonstrate that the strategy of developing biased KOR agonists offers a promising new way to treat pain and intractable itch without the potential for abuse.

###

In addition to Bohn, other authors of the study, "Biased Agonists of the Kappa Opioid Receptor Suppress Pain and Itch without Causing Sedation and Dysphoria," include TSRI's Tarsis Brust, Jenny Morgenweck, Lei Zhou, Edward L. Stahl, Cullen L. Schmid and Michael D. Cameron; Susy A. Kim, Jamie H. Rose, Jason Locke, Sara L. Jones, and Thomas J. Martin of Wake Forrest University; and Sarah M. Scarry and Jeffrey Aubé of the University of North Carolina at Chapel Hill.

This research was supported by the National Institutes of Health (grants P01GM113852, P50DA006634, R01DA014030, U01AA014091 and R01DA031297).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs more than 2,500 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists–including two Nobel laureates and 20 members of the National Academy of Science, Engineering or Medicine–work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see http://www.scripps.edu.

Media Contact

Eric Sauter
[email protected]
267-337-3859
@scrippsresearch

http://www.scripps.edu

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

A revolution in recycling

Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue

May 19, 2022
Tom70-based transcriptional regulation of mitochondrial biogenesis and aging

Buck Scientist uncovers clues to aging in mitochondria

May 18, 2022

Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center

May 18, 2022

NIAID announces antiviral drug development awards

May 18, 2022
Please login to join discussion

POPULAR NEWS

  • Weybourne Atmospheric Observatory

    Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVirologyVehiclesZoology/Veterinary ScienceVaccinesUrogenital SystemUrbanizationWeaponryVirusVaccineViolence/CriminalsWeather/Storms

Recent Posts

  • Recycling more precious metals from nuclear and electronic waste using the Picasso pigment, Prussian blue
  • Buck Scientist uncovers clues to aging in mitochondria
  • Scripps Research awarded $67 million by NIH to lead new Pandemic Preparedness Center
  • NIAID announces antiviral drug development awards
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....