• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists turn back evolutionary clock to develop high-CO2-tolerant microalgae

Bioengineer by Bioengineer
March 25, 2019
in Biology
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WEI Li

The rapid elevation of atmospheric carbon dioxide level has led to global warming and ocean acidification. Microalgae, accounting for nearly 40% of global carbon dioxide fixation on Earth, are on the forefront of mankind’s battle against climate change, since many of them are able to directly convert sunlight and industrial carbon dioxide into transportation fuels and energy-rich nutrients.

However, the high concentration of carbon dioxide in flue gases generally inhibits the growth of industrial microalgae. Therefore, reducing the so-called “CO2 poisoning effect,” i.e., improving tolerance to high levels of CO2, has become a priority in the development of super microalgae for carbon fixation.

In a new study published in Metabolic Engineering, a team of scientists led by Prof. XU Jian from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS), and Prof. Ansgar Poetsch from Ruhr University, developed a way to improve tolerance to high levels of CO2 in the industrial oil-producing microalgae Nannochloropsis.

The research team started by discovering that CA2, a key enzyme of the carbon-concentrating mechanism (CCM), is a key sensor of the level of extracellular CO2. Then instead of enhancing the function of the sensor, they reduced its activity through RNAi-based gene knockdown. Surprisingly, the mutants were able to grow 30% faster than wild-type cells at a 5% CO2 level in flue gas, over 100 times higher than the 0.04% CO2 level found in air. Moreover, this advantage was persistent under various types of photobioreactors and a wide range of cultivation scales.

In ancient times, Earth’s atmospheric CO2 level was many times higher than today. Over millions of years of evolution, the CCMs of microalgae, whose role was to concentrate CO2 molecules around the prevalent carbon-fixing machinery called RuBisCO, have had to gradually adapt to lower and lower levels of atmospheric CO2.

Therefore, by down-regulating CCM activity, the research team essentially turned back the clock of this evolutionary process and returned modern-day CCM to its ancient high-CO2-accustomed form. This “anti-evolution” endeavor by scientists improves the microalga’s tolerance to high CO2 environments, such as that found in flue gases.

This novel strategy has general implications for the development of industrial oil-producing microalgae as well as food crops, under circumstances where high carbon levels are beneficial or even necessary.

These circumstances can arise not only in the industrial conversion of flue gas to reduce carbon emissions and mitigate global warming, but also as mankind explores space in search of its next home. For example, on Mars, the most promising planet to serve as mankind’s second home due to its short distance from Earth, the level of CO2 is as high as 95%. Thus, changing this hostile atmosphere to a human-friendly one is a must before Mars can be called home.

###

Media Contact
CHENG Jing
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.ymben.2019.03.004

Tags: BiologyClimate ChangeEcology/EnvironmentEvolutionPollution/Remediation
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Starter Cultures in Cocoa Fermentation: Flavor Impact

September 8, 2025
Leaf Beetle Evolution Boosts Defense Against Shared Wasp

Leaf Beetle Evolution Boosts Defense Against Shared Wasp

September 8, 2025

Evaluating Impact of Environment on Kenyan Donkey Welfare

September 8, 2025

Mountain Frogs’ Niche Adaptation to Climate Change

September 8, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing Memory Through Targeted Training Techniques

Chitosan-Enhanced Therapy Reduces Epidural Scar Adhesions

Skin Carotenoids Linked to Health and Lifestyle in Youth

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.