• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists tackle breeding challenges of land mine-finding rats

Bioengineer by Bioengineer
January 24, 2019
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Aubrey Kelly


ITHACA, N.Y. – Thousands of people – many of them children – are hurt or killed by land mines each year, so finding these devices before they explode is critical.

There is a surprising champion of detection: the African giant pouched rat. Native to sub-Saharan Africa, the pouched rats are large – they can grow up to 3 feet long, including the tail – but are still too small to set off the land mines. They have an exceptional sense of smell – they are also used to detect tuberculosis – but scientists know very little about their biology or social structure, and they’re difficult to breed in captivity.

“We wanted to understand their reproductive behaviors and olfactory capabilities, because they have been so important in humanitarian work,” said Alex Ophir, assistant professor of psychology in the College of Arts and Sciences.

Cornell University researchers have found that the pouched rats’ reproductive system is unlike any other species. They report their findings in a study, “Anogenital Distance Predicts Sexual Odour Preference in African Giant Pouched Rats,” published Jan. 17 in Animal Behaviour. Co-authors were Ophir, postdoctoral researcher Angela Freeman and Michael Sheehan, assistant professor of neurobiology and behavior.

For male rats searching for a mate, identifying which adult females are reproductively available, or patent, is critical. Female pouched rats have extremely delayed sexual development. When the researchers looked at whether male pouched rats have a preference for the scent of females who are patent, they found something unexpected.

Males with longer anogenital distances (AGD) could detect the difference between patent and non-patent females and preferred the scent of patent females. AGD, an indirect marker of masculinization, is determined by developmental exposure in utero to sex hormones like testosterone. Males with shorter AGD showed no preference for patent females. Similarly, patent females showed a preference for the scent of masculinized males, while non-patent females did not.

This is the first time it’s been shown that longer AGD is associated with more efficient communication and signal processing, according to Freeman, first author of the paper.

Ophir noted that being able to distinguish viable from non-viable partners in a split second has long-term repercussions for reproductive success among the species.

“It is amazing to think that in utero experiences can lock in the ability of these males to detect differences in female reproductive availability,” Ophir said. “Our results raise interesting evolutionary questions, like how does natural selection operate on characteristics that are largely determined by chance features of the uterine environment?”

In other rodent species, patency is dictated by the estrous cycle. But that does not seem to be the case with pouched rats.

“This kind of patency change is different from basically every other rodent that’s been studied up until this point,” said Freeman. “Further studies to understand this process will help explain why breeding pouched rats is so difficult in captivity.”

###

The study was supported by funding from the Army Research Office and DARPA and the College of Arts and Sciences.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Media Contact
Lindsey Hadlock
[email protected]
607-269-6911

Original Source

http://news.cornell.edu/stories/2019/01/scientists-tackle-breeding-challenges-land-mine-finding-rats

Related Journal Article

http://dx.doi.org/10.1016/j.anbehav.2018.12.010

Tags: BiologyDevelopmental/Reproductive BiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.