• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists seek faster route to treat depression

Bioengineer by Bioengineer
January 4, 2021
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research group used epigenetic modulators to try to ‘erase’ the damage done by stress to neuroplasticity. The study showed that acute intervention in epigenetic mechanisms produces antidepressant-like effects more rapidly than conventional drugs

IMAGE

Credit: FCFRP-USP

By Karina Ninni | Agência FAPESP – Treatment of depression faces two main challenges. The first is that almost 50% of patients do not respond well to existing antidepressants. The second is that conventional medications take a relatively long time – around three to five weeks – to have the desired effect. A group of researchers affiliated with the University of São Paulo (USP) in Brazil set out to tackle the second problem by using epigenetic modulators to try to “erase” the consequences of stress. Epigenetic mechanisms are part of a complex system that controls how and when genes are switched on or off.

Exposure to stress, a key trigger of depression, alters certain epigenetic markers in the brain. Many of these alterations occur in genes associated with neuroplasticity, the brain’s ability to change in response to experience. Stress increases DNA methylation in these genes.

DNA methylation is a chromatin remodeling process that regulates gene expression by recruiting proteins involved in gene repression or by inhibiting the binding of transcription factors to DNA. Most existing antidepressants are designed to reduce this process.

The team led by Sâmia Joca, a professor at USP and the University of Aarhus in Denmark, decided to conduct an in-depth investigation into the action of BDNF (brain-derived neurotrophic factor), a nervous system protein with well-documented effects on the regulation of neuronal plasticity.

“Stress reduces expression of BDNF and, as shown in the literature, antidepressants have no effect if BDNF signaling is blocked. That’s why we focused on BDNF,” said Joca, who is affiliated with the Biomolecular Science Department at USP’s Ribeirão Preto School of Pharmaceutical Sciences (FCFRP).

The group tested the hypothesis that stress increases methylation of the gene for BDNF, reducing its expression and that this reduction is linked to depressive behavior. “Our starting point was this: if we administered a genetic modulator that inhibited DNA methylation, the process wouldn’t happen, BDNF levels would be normal, and there would be an antidepressant effect,” Joca said. “If the antidepressant effect is indeed linked to normalization of the methylation profile, so that conventional drugs take time to work because it takes time to eliminate stress-induced alterations, we imagined that direct modulation of these epigenetic mechanisms would produce the effect rapidly. We found this was indeed the case.”

They report the results in an article published in the journal Molecular Neurobiology. The first author is Amanda Juliana Sales, who was supported by FAPESP. The other authors are Izaque S. Maciel and Angélica Suavinha, researchers supervised by last author Joca and also supported by FAPESP.

“We tested two drugs, one of which is used to treat cancer (gliomas). The other is completely experimental,” Joca said. “It’s important to note that these drugs can’t be used to treat depression because if they reduce DNA methylation unrestrictedly they’ll increase the expression of several genes rather than just the gene that interests us. So there will be adverse effects. The findings point not to prospects for novel antidepressants but to an interesting angle from which to develop novel treatments.”

Behavior

According to Joca, to test the hypothesis that direct modulation of epigenetic mechanisms would work faster, it was necessary to use (and validate) a model that distinguished very clearly between chronic and acute treatment. The scientists first validated a stress-induced depression model in rats treated with well-known conventional drugs. In this model, called “learned helplessness”, the rats were exposed to inescapable stress, followed seven days later by a situation in which it was possible to avoid stress by moving to the other side of the chamber they were in.

The results showed a higher number of failures to learn this avoidance behavior among stressed than non-stressed animals, which was expected. This trend was attenuated by chronic treatment with conventional antidepressants and acute treatment with epigenetic modulators.

“What we call learned helplessness in this model is similar to depression in humans, to the feeling that there’s nothing the person can do to make the situation better,” Joca said. “The model was validated and showed that when continuously treated with antidepressants, the animals returned to normal and resembled non-stressed animals in behavioral terms. However, this only happened if they were treated repeatedly. The same applies to depressed people, who have to take the drug continuously. There is no acute effect from a single dose.”

The forced swimming test was also used to stress the rats, whose behavior was observed after 24 hours. In this case, too, conventional drugs reduced the level of stress-induced depression. Having validated the model, the researchers ran another series of experiments in which epigenetic modulators were found to have an antidepressant-like effect.

Retest reliability

The team tested two different drugs as modulators, 5-AzaD and RG108. Both inhibit the enzyme responsible for DNA methylation, “but they aren’t chemically related,” Joca explained. “We wanted to avoid the possibility that the effect was due to some non-specific mechanism in one of the drugs. So we used entirely different drugs and obtained the same result. We measured the effect at two different times, shortly after the inescapable stress in one group and before the helplessness test in the other. We observed a rapid antidepressant effect in both cases.”

The next step was a molecular analysis of 5-AzaD in order to produce a methylation profile of the gene of interest. “We found that stress did indeed increase methylation of BDNF as well as TrkB, another nervous system protein, and this was moderately attenuated by our treatments,” Joca said.

Because the alteration was very subtle, the researchers decided to analyze retest reliability. “Using a different model, we reproduced results of the forced swimming test and injected the drug systemically while also administering a BDNF signaling inhibitor to the cortex. This had no antidepressant effect,” Joca said.

The study was a continuation of the work Joca and her team have been doing for several years. “In 2010, we published an article showing that these drugs had an antidepressant effect. Not long after that, we published another article showing that antidepressant treatment modulated DNA methylation. The interesting point in this latest study was the production of the antidepressant effect by means of an acute intervention. This is the first time epigenetic modulators have been shown to have a rapid antidepressant effect,” Joca said.

###

Sales has continued her postdoctoral research with a fellowship from FAPESP, and is currently working under Francisco Silveira Guimarães, a professor at USP’s Ribeirão Preto Medical School (FMRP).

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Media Contact
Heloisa Reinert
[email protected]

Original Source

https://agencia.fapesp.br/scientists-seek-faster-route-to-treat-depression/34920/

Related Journal Article

http://dx.doi.org/10.1007/s12035-020-02145-4

Tags: Depression/AngerMedicine/HealthneurobiologyNeurochemistryPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Better diet and glucose uptake in the brain lead to longer life in fruit flies

January 16, 2021
IMAGE

Howard University professor to receive first Joseph A. Johnson Award

January 15, 2021

Nanodiamonds feel the heat

January 15, 2021

Controlling chemical catalysts with sculpted light

January 15, 2021
Next Post
IMAGE

WVU mycologists receive National Geographic Explorers grant to study fungal diversity of millipedes

IMAGE

Sweetened beverage sales bounced back quickly after Cook County tax repealed

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    53 shares
    Share 21 Tweet 13
  • Blood pressure drug may be key to increasing lifespan, new study shows

    44 shares
    Share 18 Tweet 11
  • New drug form may help treat osteoporosis, calcium-related disorders

    38 shares
    Share 15 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeChemistry/Physics/Materials SciencesBiologyInfectious/Emerging DiseasesTechnology/Engineering/Computer ScienceMedicine/HealthEcology/EnvironmentMaterialsGeneticscancerPublic HealthCell Biology

Recent Posts

  • Better diet and glucose uptake in the brain lead to longer life in fruit flies
  • Rapid blood test identifies COVID-19 patients at high risk of severe disease
  • Conductive nature in crystal structures revealed at magnification of 10 million times
  • Howard University professor to receive first Joseph A. Johnson Award
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In