• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, January 20, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Scientists reach limit of multi-parameter quantum measurement with zero trade-off

Bioengineer by Bioengineer
January 4, 2021
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: HOU Zhibo et al.

Real-life applications like magnetometry or quantum gyroscope typically involve precise measurement on multiple parameters. How to achieve the ultimate precision limits simultaneously is a long sought-after grail in the field.

It is widely believed that the ultimate precision limits for all parameters cannot be achieved simultaneously, since generators of different parameters are generally non-commuting, which induces the trade-offs among the precisions.

Yet such trade-offs are escaped from by the group of Prof. LI Chuanfeng and Prof. XIANG Guoyong from Key Laboratory of Quantum Information at University of Science and Technology of China of the Chinese Academy of Sciences and their collaborator Prof. YUAN Haidong from Chinese University of Hongkong.

They counteracted the trade-offs and achieved the precision limit for the estimation of all three parameters in SU(2) operators simultaneously with 13.27 dB improvement over the shot-noise limit, which has been published in journal Science Advances.

XIANG and researchers extended the control-enhanced sequential measurement scheme from single-parameter estimation to multi-parameter estimation.

They related the simultaneous multi-parameter quantum estimation directly to the Heisenberg uncertainty relations and showed that to achieve the precision limit for multiple parameters simultaneously requires the simultaneous saturation of the minimum uncertainty in multiple Heisenberg uncertainty relations.

As the first experimental demonstration of multi-parameter quantum estimation with zero trade-off, the work reveals the deep connection between quantum metrology and the Heisenberg uncertainty principle and marks a crucial step towards achieving the ultimate precision of multi-parameter quantum estimation.

XIANG’s group have been dedicated to counteracting the trade-offs in multi-parameter estimation. They first developed new experimental measurement techniques of collective measurements, which successfully reduced the trade-offs in quantum state tomography and quantum orienteering . Then they optimized the entangled probe states in quantum magnetometry and obtained the ultimate precision limit for three magnetic components with minimum trade-offs. Though diminished, the trade-offs still exist in these past works.

###

Media Contact
Jane FAN Qiong
[email protected]

Related Journal Article

http://dx.doi.org/10.1126/sciadv.abd2986

Tags: Chemistry/Physics/Materials SciencesElectromagneticsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Describing the worldviews of the new ‘tech elite’

January 20, 2021
IMAGE

Automated imaging reveals where TAU protein originates in the brain in Alzheimer’s disease

January 20, 2021

Deep sleep takes out the trash

January 20, 2021

NIH researchers identify new genetic disorder that affects brain, craniofacial skeleton

January 20, 2021
Next Post
IMAGE

Single-cell analysis of metastatic gastric cancer finds diverse tumor cell populations associated with patient outcomes

IMAGE

Scientists discover how mother-of-pearl self-assembles into a perfect structure

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    62 shares
    Share 25 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • Blood pressure drug may be key to increasing lifespan, new study shows

    45 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Medicine/HealthInfectious/Emerging DiseasesCell BiologyPublic HealthGeneticsTechnology/Engineering/Computer ScienceChemistry/Physics/Materials SciencesMaterialsBiologyClimate ChangecancerEcology/Environment

Recent Posts

  • Describing the worldviews of the new ‘tech elite’
  • Automated imaging reveals where TAU protein originates in the brain in Alzheimer’s disease
  • Deep sleep takes out the trash
  • NIH researchers identify new genetic disorder that affects brain, craniofacial skeleton
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In