• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, February 28, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists offer designer ‘big atoms’ on demand

Bioengineer by Bioengineer
May 29, 2019
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Smalyukh lab

In the not-so-distant future, researchers may be able to build atoms to your specifications with the click of a button. It’s still the stuff of science fiction, but a team at the University of Colorado Boulder reports that it is getting closer when it comes to controlling and assembling particles called “big atoms.”

The new research, which will be published on May 29 in Nature, centers around colloidal particles that, when mixed with liquid crystals, act a lot like the elements of the periodic table. These particles give physicists the opportunity to probe how hydrogen, helium and other atoms behave and interact without needing to zoom down to the atomic level.

By exposing the big atoms to different kinds of light, for example, the team showed that it could flip their charges with a flick of a switch. In other words, particles that once attracted each other now repel each other.

“Because we have so much control, we have the ability to design how these particles assemble and what properties they have,” said Ivan Smalyukh, a professor in the Department of Physics. “It’s like a designer toolkit.”

That designer toolkit begins with a simple ingredient: liquid crystals.

These materials, which provide the crisp images on your smartphone screen, are often made up of molecules in tidy arrangements, such as rods that all point in a single direction.

In the last decade or so, however, scientists have noticed something odd about these fluid-like materials. If you drop particles, such as microscopic grains of silica, into liquid crystals, the once orderly molecules inside will bend and squish to make room for the new additions–a bit like shoving a football lineman into an already-crowded subway car.

And, remarkably, the way those liquid crystals bend can be mathematically analogous to the structures of atoms’ electron shells.

“How the liquid crystals bend around the particles is very important,” said Smalyukh, also in the Materials Science Engineering Program and Department of Electrical, Computer, and Energy Engineering. “When you disrupt those molecules, it costs energy, and that energy drives interesting interactions.”

Bend liquid crystal molecules in just the right way and the bits of silica will clink into each other as if they were two atoms bonding together, but much bigger.

The problem, Smalyukh said, is that until recently, scientists had very little control over those big atom interactions. His group had the solution.

To make their unique colloidal mixture, Smalyukh and his colleagues used pieces of silica in the shape of hexagons for their big atoms. But before plopping those particles into liquid crystals, the researchers coated them in a type of dye that rotates when exposed to different kinds of light.

When the researchers exposed their mixture to a certain type of blue light, the liquid crystal molecules would bend around the hexagons following one pattern. Use a different kind of light and they would bend in an entirely different way.

The group reported that they could switch a big atom’s effective charge from positive to negative and back again on a whim.

“It’s almost like you can shine light and turn matter into antimatter,” said Ye Yuan, a postdoctoral researcher in physics and lead author of the new study. Other coauthors included postdocs Qingkun Liu and Bohdan Senyuk.

And, Yuan said, the team was able to control those interactions using an ordinary lamp with a filter on it–no high-powered lasers required.

“In principle, we could have a good sunny day in Colorado and bring our samples outside and see those interactions,” Yuan said.

Which gets him excited for what the team could build with these big atoms. The researchers believe that, with the right tweaks, they could use their method to assemble particles in unique ways, creating faux-atomic structures that don’t exist in nature–then dissolve those structures just as easily.

“In some ways, we still need to figure out what we can do with this,” Smalyukh said.

Building your own periodic table from scratch? Stay tuned.

###

Media Contact
Daniel Strain
[email protected]

Original Source

https://www.colorado.edu/today/2019/05/23/scientists-offer-designer-big-atoms-demand

Related Journal Article

http://dx.doi.org/10.1038/s41586-019-1247-7

Tags: Atomic PhysicsAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

C-Path and Global Partners launch Ataxia Consortium

February 26, 2021
IMAGE

Quantum quirk yields giant magnetic effect, where none should exist

February 26, 2021

Meteorites remember conditions of stellar explosions

February 26, 2021

How photoblueing disturbs microscopy

February 26, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    638 shares
    Share 255 Tweet 160
  • People living with HIV face premature heart disease and barriers to care

    82 shares
    Share 33 Tweet 21
  • Global analysis suggests COVID-19 is seasonal

    38 shares
    Share 15 Tweet 10
  • HIV: an innovative therapeutic breakthrough to optimize the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceMedicine/HealthcancerInfectious/Emerging DiseasesEcology/EnvironmentMaterialsCell BiologyClimate ChangeBiologyGeneticsPublic HealthChemistry/Physics/Materials Sciences

Recent Posts

  • Predicts the onset of Alzheimer’s Disease (AD) using deep learning-based Splice-AI
  • When foams collapse (and when they don’t)
  • UTA researcher explores effects of trauma at the cellular, tissue levels of the brain
  • Picture books can boost physical activity for youth with autism
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In