• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

Scientists neutralize reactive nitrogen molecules to enhance cancer immunotherapy

Bioengineer by Bioengineer
October 29, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Matt Cashore/University of Notre Dame

Immunotherapy — harnessing T-cells to attack cancer cells in the body — has given hope to patients who endure round after round of treatment, including chemotherapy, to little effect. For all of its promise, however, immunotherapy still benefits only a minority of patients — a reality driving research in the field for ways to improve the relatively new approach.

One method for improving efficacy is the development of bio- and activity-based markers to better predict which patients will respond to immunotherapy and identify why some don't. In a new study in the Proceedings of the National Academy of Sciences, researchers at the University of Notre Dame studying tumors in prostate cancer models found that nitration of an amino acid can inhibit T-cell activation, thwarting the T-cell's ability to kill cancer cells.

"People put a lot of hope on immunotherapy, and it has worked well for some patients, but overall the number is still low," said Xin Lu, John M. and Mary Jo Boler Assistant Professor of Biological Sciences at Notre Dame who studies molecular understanding and immunotherapy of metastatic cancer. "By identifying activity-based markers like this one, we can design approaches that shut down the particular mechanisms that inhibit T-cell activation so immunotherapy can work."

In the study, Lu and his team explain how highly reactive molecules, called reactive nitrogen species (RNS), produced by myeloid-derived suppressor cells (MDSCs) cause nitration of an amino acid in a lymphocyte-specific protein called tyrosine kinase (LCK), which is crucial for T-cell activation. Nitration is a process to add a special chemical group "nitro" to the amino acid molecule, called tyrosine, in proteins. After this modification, the protein may alter its overall structure thus exhibiting different functions. MDSCs are prevalent in solid tumors that contribute to more than 90 percent of all cancers.

Prostate cancer "is a slow progressing disease," Lu said. "Nevertheless, for patients with aggressive cases of prostate cancer, there is no effective treatment."

According to the American Cancer Society, prostate cancer is the second leading cause of cancer-related death for men in the United States behind lung cancer. Lu and his team also looked at tumors in lung cancer models, and tested treatments as part of the study.

"At this moment, we don't have an agent to block a particular amino acid from nitration," Lu said. "But we do have ways to block nitration all together."

Lu tested three methods of treatment to block nitration, which would keep the LCK protein active — and allow it to do its job of killing cancer cells. Treating models with an immune checkpoint blockade or uric acid, which can neutralize RNS to limited degrees, yielded little response in the tumor models.

"When we combined them, our results showed that it could suppress RNS, activate cytotoxic T cells and achieve impressive efficacy," Lu said.

While MDSCs are highly abundant in solid tumors, they are not all alike, which is why Lu is focusing on activity taking place at the molecular level. The hope is to expand the study and investigate new antibodies capable of recognizing this particular type of modification for better prognosis.

"You can imagine in the clinic, if a patient comes in with metastatic prostate cancer from which a fine-needle biopsy can be acquired, you can look for MDSC activity using the nitrated protein biomarker and predict whether or not an agent that inhibits MDSC will be required for immunotherapy to work," he said.

Because MDSCs are in high abundance in many types of solid tumors, Lu said it could be argued that the phenomenon found in the prostate cancer models has a high likelihood of applying to other solid tumors in other types of cancer.

"The question is how we reach more people," Lu said. "The goal is to identify biomarkers and therapeutic targets that enhance current immunotherapies to unleash more power from these therapies. By doing this, we may benefit many more patients."

###

The study was funded by an American Cancer Society Institutional Research Grant through the Harper Cancer Research Institute, with support from a Core Pilot grant from the Indiana Clinical and Translational Sciences Institute, as well as support from the Freimann Life Sciences Center and Mass Spectrometry and Proteomics Facility at Notre Dame. Lu's research is supported by the Boler-Parseghian Center for Rare and Neglected Diseases.

Media Contact

Jessica Sieff
[email protected]
574-631-3933
@ND_news

http://www.nd.edu

Original Source

https://news.nd.edu/news/scientists-neutralize-reactive-nitrogen-molecules-to-enhance-cancer-immunotherapy/ http://dx.doi.org/10.1073/pnas.1800695115

Share12Tweet7Share2ShareShareShare1

Related Posts

Life’s Essential 8 Links Heart Health, Mortality

November 4, 2025

PRMT1: Key Survival Target in Myeloma

November 4, 2025

Rare HOXB13 X285K Variant in Caribbean Prostate Cancer

November 4, 2025

Super Microvascular Imaging Enhances Axillary Node Diagnosis

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Enhancing V4+ Stability in Zinc-Ion Batteries

Dr. Harolyn Belcher Honored with 2026 David G. Nichols Health Equity Award by American Pediatric Society

FAU Engineering Secures $1.5M Funding to Establish the Ubicquia Innovation Center for Intelligent Infrastructure

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.