• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 31, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Scientists identify new gut-liver drug recycling process

Bioengineer by Bioengineer
July 14, 2021
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Implications for developing treatments for intestinal diseases

IMAGE

Credit: University of Houston

A team of University of Houston pharmaceutical researchers is reporting a newly recognized process of drug metabolism in the intestines – followed by recycling through the liver – that could have important implications for developing treatments for intestinal diseases and for taking multiple medications at the same time.

“The intestines play a crucial role in metabolizing and recycling certain plant compounds and drugs,” reports Ming Hu, Diana S-L. Chow Endowed Professor of Drug Discovery and Development and the senior author of the paper in eLife. “The discovery has important implications for scientists trying to understand how both phytochemicals (a type of plant compound, such as flavonoids) and medicines are metabolized in the body.”

The new information could help chemists develop better drugs and clinicians to fine-tune medication dosing, especially when dealing with polypharmacy, where a patient takes multiple drugs at the same time.

Scientists have long recognized that bile acid is produced in the liver and released into the intestines and is then recycled back through the liver for reuse as the bile. Some medications that are metabolized in the liver also go through this process, known as enterohepatic recycling (EHR). This can extend the life of drugs in the body, which may affect how well they work and whether they cause side effects.

“The liver has long been considered the most important organ for drug metabolism,” said lead author Yifan Tu, who conducted the study while he was doing his doctoral work at the UH College of Pharmacy. “But we’ve shown that the intestines also play a major role in drug metabolism.”

In their experiments, the team administered 16 different types of flavonoids or drugs directly to the liver or intestines and then tracked what happened to the treatments. They found that some drugs and compounds were metabolized in the intestines and the metabolites were then transported to the liver before being cycled back into the intestines.

“In this process, the liver acts only as a recycling organ, which is rare, since the liver is known to be the metabolic ‘superstar’ organ in humans,” said Tu, who is now a postdoctoral fellow at the pharmaceutical company Boehringer Ingelheim in Connecticut.

The team has called this new mechanism ‘hepatic enteric recycling’ (HER). They found that, in this process, the roles of the liver and intestines are reversed. “This may explain why some drugs or plant compounds have larger effects on the intestine than anticipated and could help scientists understand how intestinal diseases may alter drug metabolism in the body,” said Tu.

“We hope our findings will be useful for medicinal chemists to design new drugs tailored to treat intestinal, especially colonic diseases,” said Hu.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/july-2021/07142021-min-hu-new-gut-liver-recycling.php

Related Journal Article

http://dx.doi.org/10.7554/eLife.58820

Tags: GastroenterologyInternal MedicineLiverMedicine/HealthMetabolism/Metabolic DiseasesPharmaceutical ChemistryPharmaceutical SciencePharmaceutical SciencesPharmaceutical/Combinatorial ChemistryPulmonary/Respiratory Medicine
Share13Tweet8Share2ShareShareShare2

Related Posts

Recipients of the 2023 Shaw Prize in Astronomy: Matthew Bailes, Duncan Lorimer and Maura McLaughlin

Matthew Bailes, Duncan Lorimer and Maura McLaughlin receive the 2023 Shaw Prize in Astronomy

May 30, 2023
Extreme precipitation change

Extreme precipitation in northeast to increase 52% by the end of the century

May 30, 2023

Dual-wavelength lasing: a new tool for steering High-harmonic generation

May 30, 2023

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons

May 30, 2023
Please login to join discussion

POPULAR NEWS

  • plants

    Plants remove cancer causing toxins from air

    39 shares
    Share 16 Tweet 10
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    36 shares
    Share 14 Tweet 9
  • Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Biological cleanup discovered for certain “forever chemicals”

The clams that fell behind, and what they can tell us about evolution and extinction

Shedding light on the complex flow dynamics within the small intestine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In