• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, September 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists identify gene that puts brakes on tissue growth

Bioengineer by Bioengineer
January 22, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Findings in worm with regenerative prowess could aid human tissue engineering methods

IMAGE

Credit: Northwestern University


The planarian flatworm is a simple animal with a mighty and highly unusual ability: it can regenerate itself from nearly every imaginable injury, including decapitation. These tiny worms can regrow any missing cell or tissue — muscle, neurons, epidermis, eyes, even a new brain.

Since the late 1800s, scientists have studied these worms to better understand fundamental principles of natural regeneration and repair, information that could provide insights into tissue healing and cancer. One mechanism that is yet unknown is how organisms like these control the proportional scaling of tissue during regeneration.

Now, two Northwestern University molecular biologists have identified the beginnings of a genetic signaling pathway that puts the brakes on the animal’s growth. This important process ensures the appropriate amount of tissue growth in these highly regenerative animals.

“These worms have essentially discovered a natural form of regenerative medicine through their evolution,” said Christian Petersen, who led the research. “Planarians can regenerate their whole lives, but how do they limit their growth? Our discovery will improve understanding of the molecular components and organizing principles that govern perfect tissue restoration.”

The findings ultimately may have important ramifications for novel tissue engineering methods or strategies to promote natural repair mechanisms in humans.

Petersen is an associate professor of molecular biosciences in Northwestern’s Weinberg College of Arts and Sciences. He and Erik G. Schad, a graduate student in Petersen’s lab, conducted the study.

The results were published in the Jan. 20 issue of the journal Current Biology. Petersen is the corresponding author, and Schad is the paper’s first author.

The researchers have identified a control system for limiting regeneration and also a new mechanism to explain how stem cells can influence growth. Specifically, Petersen and Schad discovered that a gene called mob4 suppresses tissue growth in the animals. When the researchers inhibited the gene in experiments, the animal grew to twice its normal size.

The gene, they found, works in a rather surprising way: by preventing the descendants of stem cells from producing a growth factor called Wnt, a protein released from cells to communicate across distances. The Wnt signaling pathway is known to play a role in cancer cell regeneration.

Planarians are 2 to 20 millimeters in size and have a complex anatomy with around a million cells. They live in freshwater ponds and streams around the world. The worm’s genome has been sequenced, and its basic biology is well-characterized, making planarians popular with scientists.

###

Petersen also is a member of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University.

The title of the paper is “STRIPAK Limits Stem Cell Differentiation of a WNT Signaling Center to Control Planarian Axis Scaling.”

Media Contact
Megan Fellman
[email protected]
847-491-3115

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2019.11.068

Tags: BiologycancerGenesGeneticsMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Investigating RIME: Adenovirus and Mycoplasma Link Uncovered

September 11, 2025

PPM1D Degradation by Proteasomes Independent of Ubiquitination

September 11, 2025

Predicting BMI Changes in Adolescent Anorexia Treatment

September 11, 2025

ABCA7 Variants Alter Neuronal Mitochondria, Phosphatidylcholine

September 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    63 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Functional Synapses Link Neurons and Lung Cancer

First-Ever Prospective Study on Colorectal Cancer Genomics

Investigating RIME: Adenovirus and Mycoplasma Link Uncovered

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.