• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, May 28, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

Scientists identify gene linking brain structure to intelligence

Bioengineer by Bioengineer
February 12, 2014
in Neuroscience
Reading Time: 2 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

For the first time, scientists at King’s College London have identified a gene linking the thickness of the grey matter in the brain to intelligence.

Scientists identify gene linking brain structure to intelligence

The study is published today in Molecular Psychiatry and may help scientists understand biological mechanisms behind some forms of intellectual impairment.

The researchers looked at the cerebral cortex, the outermost layer of the human brain. It is known as ‘grey matter’ and plays a key role in memory, attention, perceptual awareness, thought, language and consciousness. Previous studies have shown that the thickness of the cerebral cortex, or ‘cortical thickness’, closely correlates with intellectual ability, however no genes had yet been identified.
An international team of scientists, led by King’s, analysed DNA samples and MRI scans from 1,583 healthy 14 year old teenagers, part of the IMAGEN cohort. The teenagers also underwent a series of tests to determine their verbal and non-verbal intelligence.

Dr Sylvane Desrivières, from the MRC Social, Genetic and Developmental Psychiatry Centre at King’s College London’s Institute of Psychiatry and lead author of the study, said: “We wanted to find out how structural differences in the brain relate to differences in intellectual ability. The genetic variation we identified is linked to synaptic plasticity – how neurons communicate. This may help us understand what happens at a neuronal level in certain forms of intellectual impairments, where the ability of the neurons to communicate effectively is somehow compromised.”

She adds: “It’s important to point out that intelligence is influenced by many genetic and environmental factors. The gene we identified only explains a tiny proportion of the differences in intellectual ability, so it’s by no means a ‘gene for intelligence’.”

The researchers looked at over 54,000 genetic variants possibly involved in brain development. They found that, on average, teenagers carrying a particular gene variant had a thinner cortex in the left cerebral hemisphere, particularly in the frontal and temporal lobes, and performed less well on tests for intellectual ability. The genetic variation affects the expression of the NPTN gene, which encodes a protein acting at neuronal synapses and therefore affects how brain cells communicate.

To confirm their findings, the researchers studied the NPTN gene in mouse and human brain cells. The researchers found that the NPTN gene had a different activity in the left and right hemispheres of the brain, which may cause the left hemisphere to be more sensitive to the effects of NPTN mutations. Their findings suggest that some differences in intellectual abilities can result from the decreased function of the NPTN gene in particular regions of the left brain hemisphere.

The genetic variation identified in this study only accounts for an estimated 0.5% of the total variation in intelligence. However, the findings may have important implications for the understanding of biological mechanisms underlying several psychiatric disorders, such as schizophrenia, autism, where impaired cognitive ability is a key feature of the disorder.

Story Source:

The above story is based on materials provided by King’s College London.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • the University of Haifa

    Groundbreaking study uncovers first evidence of long-term directionality in the origination of human mutation, fundamentally challenging Neo-Darwinism

    115 shares
    Share 46 Tweet 29
  • How life and geology worked together to forge Earth’s nutrient rich crust

    35 shares
    Share 14 Tweet 9
  • Element creation in the lab deepens understanding of surface explosions on neutron stars

    34 shares
    Share 14 Tweet 9
  • The case for engineering our food

    73 shares
    Share 29 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Study finds distinct patterns of pre-existing brain health characteristics in stroke patients

New moms and dads left unprepared for parenthood by government health ‘failures’, report warns

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 50 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In