• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists from NUST MISIS manage to improve metallic glasses

Bioengineer by Bioengineer
October 23, 2020
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NUST MISIS

Researchers at National University of Science and Technology MISIS (NUST MISIS) have managed to develop a unique method to process bulk metallic glasses. According to the authors of the study, they have managed to find processing conditions that significantly improve the quality of this promising material. The research results were published in Journal of Alloys and Compounds.

Metallic glasses (amorphous metals) are materials which, unlike crystalline forms, don’t have a long range atomic order. According to the scientists, this makes the material high-strength, elastic, corrosion resistant; amorphous metals also have other useful properties, due to which they are in demand in instrument making, mechanical engineering, medicine and magneto-electrical engineering.

NUST MISIS scientists explained that the material’s brittleness is one of the obstacles to its widespread use. The authors of the study believe that the new method to process metallic glasses will help eliminating this problem. The method was tested on an amorphous Zr-Cu-Fe-Al system alloy.

“Annealing before and after rolling was ‘prohibited’ by the canons of the science of metallic glasses, since this leads to their embrittlement in the absolute majority of cases. The choice of the alloy composition and alloying system helped us bypass this problem: annealing at about 100 degrees below the glass-transition temperature allowed to achieve ductilization of bulk samples and hardening of tape samples without embrittlement,” Professor Dmitry Luzgin, the research supervisor, explained.

According to the scientists, it is the way the original amorphous matrix of the alloy decomposes that affects the resulting material’s characteristics. Different results are achieved depending on the samples’ geometry, bulk or tape.

“For bulk samples, we’ve achieved an increase in tensile plasticity of up to 1.5% at room temperature by dividing a homogeneous amorphous phase into two. For ribbon samples, a 25% increase in hardness has been achieved, which is provided with the separation of secondary-amorphous-phase glassy nanoparticles of about 7 nm with retention of plasticity on bending and compression. This is an unexpected and rather significant result,” Andrey Bazlov, the author of the method, an employee at the Department of Physical Metallurgy of Non-ferrous Metals of NUST MISIS, said.

NUST MISIS scientists explained that the Zr-Cu-Fe-Al system alloy cannot be used as the main structural material due to its high cost; but they believe that the proposed technology can be applied to other amorphous alloys, in particular, titanium.

The new method will simplify the process of imparting the necessary properties to metallic glasses, thereby expanding their scope of application. In the future, the research team wants to use the new technology to produce titanium and other high-quality bulk metallic glasses.

###

Media Contact
Lyudmila Dozhdikova
[email protected]

Original Source

https://en.misis.ru/university/news/science/2020-10/7034/

Related Journal Article

http://dx.doi.org/10.1016/j.jallcom.2020.157138

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsIndustrial Engineering/ChemistryMaterialsResearch/DevelopmentSurgeryTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

Boosting Heart Health in Young Adults Lowers Cardiovascular Disease Risk Later in Life

October 6, 2025

Hippo Effector YAP Enhances Enterovirus in Diabetes

October 6, 2025

Inflammatory Factors Linking Diabetic Retinopathy and Cognitive Decline

October 6, 2025

Saikosaponin-D kills cancer by reprogramming splicing

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    72 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

World Telecommunication Development Conference 2025: Paving the Way for Global Connectivity and Digital Advancement

Global Oncology Leaders Convene at National Press Club on October 24: NFCR Summit Showcases AI Innovation in Cancer Research and Care

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.