• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 17, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Scientists discover two new species of ancient, burrowing mammal ancestors

Bioengineer by Bioengineer
April 7, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

120-million-year-old animals evolved ‘scratch digging’ traits independently

IMAGE

Credit: MAO Fangyuan

A joint research team led by Dr. MAO Fangyuan and Dr. ZHANG Chi from the Institute of Vertebrate Paleontology and Paleoanthropology (IVPP) of the Chinese Academy of Sciences and Prof. MENG Jin from the American Museum of Natural History have discovered two new species of mammal-like, burrowing animals that lived about 120 million years ago in what is now northeastern China.

The new species, described in Nature on April 7, are distantly related. However, they independently evolved traits to support their digging lifestyle. They represent the first “scratch diggers” discovered in this ecosystem.

“There are many hypotheses about why animals dig into the soil and live underground,” said Prof. MENG, lead author of the study. “For protection against predators, to maintain a temperature that’s relatively constant, or to find food sources like insects and plant roots. These two fossils are a very unusual, deep-time example of animals that are not closely related and yet both evolved the highly specialized characteristics of a digger.”

The fossil mammaliamorph species–predecessors to mammals–were discovered in the Jehol Biota, which represents the Early Cretaceous epoch, about 145 to 100 million years ago.

One is a mammal-like reptile called a tritylodontid and represents the first of its kind to be identified in this biota. About a foot in length, it was named Fossiomanus sinensis. The other one, Jueconodon cheni, is a eutriconodontan, a distant cousin of modern placental mammals and marsupials, which were common in the biota. It is about seven inches long.

Mammals that are adapted to burrowing have specialized traits for digging. The researchers found some of these hallmark features, including shorter limbs, strong forelimbs with robust hands, and a short tail, in both Fossiomanus and Jueconodon. In particular, these characteristics point to a type of digging behavior known as “scratch digging,” accomplished mainly by the claws of the forelimbs.

“This is the first convincing evidence for fossorial life in those two groups,” said Dr. MAO. “It also is the first case of scratch diggers we know about in the Jehol Biota, which was home to a great diversity of animals, from dinosaurs and insects to plants.”

The animals also share another unusual feature: an elongated vertebral column. Typically, from the neck to the hip, mammals have 26 vertebrae. However, Fossiomanus had 38 vertebrae–a staggering 12 more than the usual number–while Jueconodon had 28.

To try to determine how these animals got their elongated axial skeleton, the paleontologists turned to recent studies in developmental biology, finding that the variation could be attributed to gene mutations that determine the number and shape of the vertebrae during early embryonic development of these animals. Variation in vertebrae number can be found in modern mammals as well, for example, in elephants, manatees, and hyraxes.

###

This study was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences Strategic Priority Research Program, the Youth Innovation Promotion Association, and the Kalbfleisch Fellowship of the American Museum of Natural History’s Richard Gilder Graduate School.

Contact: PhD candidate at the Faculty of Medicine, University of Bergen, Einar Marius Hjellestad Martinsen – e-mail – [email protected] – cell phone – +4797788414

Media Contact
MAO Fangyuan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-021-03433-2

Tags: ArchaeologyEvolutionOld WorldPaleontology
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

University of Colorado inter-campus collaboration wins R01 award for salivary gland cancer

April 16, 2021
IMAGE

New understanding of the deleterious immune response in rheumatoid arthritis

April 16, 2021

Scientists call for climate projections as part of more robust biodiversity conservation

April 16, 2021

Quality and quantity of enrichments influence well-being of aquaculture fishes

April 16, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    60 shares
    Share 24 Tweet 15
  • Terahertz accelerates beyond 5G towards 6G

    852 shares
    Share 341 Tweet 213
  • A sturdier spike protein explains the faster spread of coronavirus variants

    44 shares
    Share 18 Tweet 11
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

University of WashingtonVaccineWeather/StormsVirusVirologyWeaponryVaccinesUrbanizationVehiclesUrogenital SystemZoology/Veterinary ScienceViolence/Criminals

Recent Posts

  • New amphibious centipede species discovered in Okinawa and Taiwan
  • USU researchers develop power converter for long-distance, underwater electric grids
  • The fate of the planet
  • The future of particle accelerators is here
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In