• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists discover key player in brain development, cell communication

Bioengineer by Bioengineer
September 6, 2025
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Led by Katie Baldwin, Ph.D., research published in Neuron shows how the loss of the protein hepaCAM drives brain development dysfunction and plays an important role in neurological disorders

CHAPEL HILL, NC – When we think of the brain, we think of neurons. But much of the brain is made of non-neuronal cells called glial cells, which help regulate brain development and function. For the first, time UNC School of Medicine scientist Katie Baldwin, PhD, and colleagues revealed a central role of the glial protein hepaCAM in building the brain and affecting brain function early in life.

The findings, published in Neuron, have implications for better understanding disorders, such as autism, epilepsy, and schizophrenia, and potentially for creating therapeutics for conditions such as the progressive brain disorder megalencephalic leukoencephalopathy with subcortical cysts (MLC).

For over one hundred years, the glia were thought of as a bunch of support cells, like a kind of brain glue keeping the more important neurons in place to do the brain’s real work. But over the past 30 years, scientists have been teasing apart the importance of glial cells as regulators of brain development and function. Still, much remains unknown, especially about complex glial cells called astrocytes, which extend thousands of fine branches throughout the brain, directly interacting with neurons and other brain cells.

During brain development prior to birth and thereafter, astrocytes establish an intricate network of distinct territories, a sort of tiling of the brain, like the tiles of a soccer ball. These cells use specialized connections, called gap junctions, to communicate throughout this network.

“Both astrocyte tiling and communication through gap junctions are disrupted in different brain disorders and following injury, suggesting these features are important for normal brain function,” said Baldwin, the corresponding author, member of the UNC Neuroscience Center, and assistant professor in the UNC Department of Cell Biology and Physiology. “But prior to our study, it was unknown how astrocytes established their territories and whether there was a link between astrocyte territory and gap junction communication, also known as coupling.”

In this study, Baldwin and colleagues focused on hepaCAM, a protein abundantly expressed on the astrocyte membranes. They created a transgenic rodent model so the animals did not express any hepaCAM protein in astrocytes. The researchers used this model along with cutting-edge genetic and imaging techniques to study the developing astrocytes, their resulting tile-like territories, and gap junction coupling.

“Deleting hepaCAM from astrocytes disrupted astrocyte territories and impaired gap junction coupling. Essentially, these astrocytes no longer do a good job of communicating with their neighbors,” Baldwin said. “We also found that, even though we did not make any disruptions to neurons, loss of hepaCAM in astrocytes altered the balance of synaptic excitation and inhibition.” That is, without this protein, astrocyte branches in contact with neurons affected the how neurons behaved.

“We think our findings have important implications for understanding the pathogenesis of MLC, as well as the general role of astrocyte dysfunction as a driving cause of neurological disorders, such as epilepsy,” Baldwin said.

Baldwin conducted this work while a postdoctoral fellow in Cagla Eroglu’s lab at Duke University before joining UNC-Chapel Hill this past spring. Her lab will continue to focus on the impact of hepaCAM mutations on astrocyte function.

“We are building on this research to explore the bigger question of how astrocytes balance their connections with other cell types in the brain,” she said, “with the goal of understanding how problems in astrocytes cause disease in humans, and how we might help people with these serious and complex disorders.”

###

Other authors of the study are Cagla Eroglu, Christabel Tan, Samuel Strader, Changyu Jiang, Justin Savage, Xabier Elorza-Vidal, Ximena Contreras, Thomas Rülicke, Simon Hippenmeyer, Raul Estevez, and Ru-Rong Ji.

The National Institutes of Health, a Holland Trice Brain Research Award, a Foerster-Bernstein Family Postdoctoral Fellowship, The Hartwell Foundation, and the European Research Council funded this research.

Media Contact
Mark Derewicz
[email protected]

Original Source

https://news.unchealthcare.org/2021/06/scientists-discover-key-player-in-brain-development-cell-communication/

Related Journal Article

http://dx.doi.org/10.1016/j.neuron.2021.05.025

Tags: Cell BiologyMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Tobacco Cessation: Ethnicity, Gender, and Acculturation Insights

October 2, 2025

Cognitive Frailty’s Impact on Hip Fracture Recovery

October 2, 2025

Social Risk Factors Linked to Diabetes Prevalence

October 2, 2025

Miniature CRISPR–Cas10 Grants Immunity via Inhibition

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    90 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    72 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tobacco Cessation: Ethnicity, Gender, and Acculturation Insights

Brain Sparing and Blood-Brain Barrier: Bridging Gaps

Enhancing Drought-Tolerant PGPR for Rice Yield

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.